These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
75 related articles for article (PubMed ID: 9972563)
1. Insights into linear and nonlinear cochlear transduction: application of a new system-identification procedure on transient-evoked otoacoustic emissions data. Krishnan G; Chertoff ME J Acoust Soc Am; 1999 Feb; 105(2 Pt 1):770-81. PubMed ID: 9972563 [TBL] [Abstract][Full Text] [Related]
2. Characterizing cochlear mechano-electric transduction using a nonlinear systems identification procedure. Chertoff ME; Steele T; Ator GA; Bian L J Acoust Soc Am; 1996 Dec; 100(6):3741-53. PubMed ID: 8969475 [TBL] [Abstract][Full Text] [Related]
4. Transient-evoked otoacoustic emissions in a representative population sample aged 18 to 25 years. Ferguson MA; Smith PA; Davis AC; Lutman ME Audiology; 2000; 39(3):125-34. PubMed ID: 10905398 [TBL] [Abstract][Full Text] [Related]
5. A bispectral approach to analyze nonlinear cochlear active mechanisms in transient evoked otoacoustic emissions. Marchesi S; Tognola G; Paglialonga A IEEE Trans Biomed Circuits Syst; 2013 Aug; 7(4):401-13. PubMed ID: 23893200 [TBL] [Abstract][Full Text] [Related]
7. Otoacoustic emissions from ears with spontaneous activity behave differently to those without: Stronger responses to tone bursts as well as to clicks. Jedrzejczak WW; Kochanek K; Skarzynski H PLoS One; 2018; 13(2):e0192930. PubMed ID: 29451905 [TBL] [Abstract][Full Text] [Related]
8. [Correlation between auditory threshold and transitory evoked otoacoustic emissions]. Komazec Z; Milosević D; Mocko M; Dankuc D; Vlaski L Srp Arh Celok Lek; 2002; 130 Suppl 1():8-11. PubMed ID: 12395455 [TBL] [Abstract][Full Text] [Related]
9. Modeling cochlear dynamics: interrelation between cochlea mechanics and psychoacoustics. Epp B; Verhey JL; Mauermann M J Acoust Soc Am; 2010 Oct; 128(4):1870-83. PubMed ID: 20968359 [TBL] [Abstract][Full Text] [Related]
10. Otoacoustic emissions and effects of contralateral white noise stimulation on transient evoked otoacoustic emissions in diabetic children. Ugur AK; Kemaloglu YK; Ugur MB; Gunduz B; Saridogan C; Yesilkaya E; Bideci A; Cinaz P; Goksu N Int J Pediatr Otorhinolaryngol; 2009 Apr; 73(4):555-9. PubMed ID: 19150138 [TBL] [Abstract][Full Text] [Related]
11. [Study of the correspondence between pure tone and distorsion product otoacoustic emissions audiometrics: basis for an objective cochlear audiometrics model]. Jürgens A; Buisan A; Canela M; Abelló P Acta Otorrinolaringol Esp; 1999 May; 50(4):253-9. PubMed ID: 10431072 [TBL] [Abstract][Full Text] [Related]
12. TEOAE amplitude growth, detectability, and response threshold in linear and nonlinear mode and in different time windows. Hoth S; Polzer M; Neumann K; Plinkert P Int J Audiol; 2007 Aug; 46(8):407-18. PubMed ID: 17654082 [TBL] [Abstract][Full Text] [Related]
13. Changes in the Compressive Nonlinearity of the Cochlea During Early Aging: Estimates From Distortion OAE Input/Output Functions. Ortmann AJ; Abdala C Ear Hear; 2016; 37(5):603-14. PubMed ID: 27232070 [TBL] [Abstract][Full Text] [Related]
14. Are normal hearing thresholds a sufficient condition for click-evoked otoacoustic emissions? Kapadia S; Lutman ME J Acoust Soc Am; 1997 Jun; 101(6):3566-7. PubMed ID: 9547113 [TBL] [Abstract][Full Text] [Related]
15. Transient-evoked otoacoustic emissions in a group of professional singers who have normal pure-tone hearing thresholds. Hamdan AL; Abouchacra KS; Zeki Al Hazzouri AG; Zaytoun G Ear Hear; 2008 Jun; 29(3):360-77. PubMed ID: 18382377 [TBL] [Abstract][Full Text] [Related]
16. Tone-burst and click-evoked otoacoustic emissions in subjects with hearing loss above 0.25, 0.5, and 1 kHz. Jedrzejczak WW; Kochanek K; Trzaskowski B; Pilka E; Skarzynski PH; Skarzynski H Ear Hear; 2012; 33(6):757-67. PubMed ID: 22710662 [TBL] [Abstract][Full Text] [Related]
17. [Objective audiometry with DPOAEs : New findings for generation mechanisms and clinical applications. German version]. Zelle D; Dalhoff E; Gummer AW HNO; 2016 Nov; 64(11):822-830. PubMed ID: 27761597 [TBL] [Abstract][Full Text] [Related]
18. The effect of stimulus bandwidth on the nonlinear-derived tone-burst-evoked otoacoustic emission. Lewis JD; Goodman SS J Assoc Res Otolaryngol; 2014 Dec; 15(6):915-31. PubMed ID: 25245497 [TBL] [Abstract][Full Text] [Related]
19. Cochlear dysfunction in hyperuricemia: otoacoustic emission analysis. Hamed SA; El-Attar AM Am J Otolaryngol; 2010; 31(3):154-61. PubMed ID: 20015733 [TBL] [Abstract][Full Text] [Related]
20. Level dependence of the nonlinear-distortion component of distortion-product otoacoustic emissions in humans. Zelle D; Thiericke JP; Dalhoff E; Gummer AW J Acoust Soc Am; 2015 Dec; 138(6):3475-90. PubMed ID: 26723305 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]