These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

511 related articles for article (PubMed ID: 9972564)

  • 1. Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs.
    Shera CA; Guinan JJ
    J Acoust Soc Am; 1999 Feb; 105(2 Pt 1):782-98. PubMed ID: 9972564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of mammalian otoacoustic emission and their implications for the clinical utility of otoacoustic emissions.
    Shera CA
    Ear Hear; 2004 Apr; 25(2):86-97. PubMed ID: 15064654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reflection- and Distortion-Source Otoacoustic Emissions: Evidence for Increased Irregularity in the Human Cochlea During Aging.
    Abdala C; Ortmann AJ; Shera CA
    J Assoc Res Otolaryngol; 2018 Oct; 19(5):493-510. PubMed ID: 29968098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulus frequency otoacoustic emissions in the Northern leopard frog, Rana pipiens pipiens: implications for inner ear mechanics.
    Meenderink SW; Narins PM
    Hear Res; 2006 Oct; 220(1-2):67-75. PubMed ID: 16942850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near equivalence of human click-evoked and stimulus-frequency otoacoustic emissions.
    Kalluri R; Shera CA
    J Acoust Soc Am; 2007 Apr; 121(4):2097-110. PubMed ID: 17471725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing the Relationship Between Reflection and Distortion Otoacoustic Emissions in Normal-Hearing Adults.
    Abdala C; Luo P; Shera CA
    J Assoc Res Otolaryngol; 2022 Oct; 23(5):647-664. PubMed ID: 35804277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-frequency analyses of transient-evoked stimulus-frequency and distortion-product otoacoustic emissions: testing cochlear model predictions.
    Konrad-Martin D; Keefe DH
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2021-43. PubMed ID: 14587602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The origin of SFOAE microstructure in the guinea pig.
    Goodman SS; Withnell RH; Shera CA
    Hear Res; 2003 Sep; 183(1-2):7-17. PubMed ID: 13679133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrically Evoked Medial Olivocochlear Efferent Effects on Stimulus Frequency Otoacoustic Emissions in Guinea Pigs.
    Berezina-Greene MA; Guinan JJ
    J Assoc Res Otolaryngol; 2017 Feb; 18(1):153-163. PubMed ID: 27798720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of stimulus-frequency otoacoustic emission latency and level to investigate cochlear mechanics in human ears.
    Schairer KS; Ellison JC; Fitzpatrick D; Keefe DH
    J Acoust Soc Am; 2006 Aug; 120(2):901-14. PubMed ID: 16938978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distortion-product source unmixing: a test of the two-mechanism model for DPOAE generation.
    Kalluri R; Shera CA
    J Acoust Soc Am; 2001 Feb; 109(2):622-37. PubMed ID: 11248969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing a Joint Reflection-Distortion OAE Profile in Humans With Endolymphatic Hydrops.
    Stiepan S; Shera CA; Abdala C
    Ear Hear; 2023 Nov-Dec 01; 44(6):1437-1450. PubMed ID: 37450653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulus frequency otoacoustic emissions evoked by swept tones.
    Chen S; Deng J; Bian L; Li G
    Hear Res; 2013 Dec; 306():104-14. PubMed ID: 24113114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efferent-induced alterations in distortion and reflection otoacoustic emissions in children.
    Mishra SK; Biswal M; Amatya A
    J Acoust Soc Am; 2018 Feb; 143(2):640. PubMed ID: 29495742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term stability between click-evoked otoacoustic emissions and distortion product otoacoustic emissions in guinea pigs: A comparison.
    Hoshino M; Ueda H; Nakata S
    ORL J Otorhinolaryngol Relat Spec; 1999; 61(4):175-80. PubMed ID: 10450050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cochlear sources and otoacoustic emissions.
    Johnson TA
    J Am Acad Audiol; 2010 Mar; 21(3):176-86. PubMed ID: 20211122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Species differences of distortion-product otoacoustic emissions: comment on "Interpretation of distortion product otoacoustic emission measurements. I. Two stimulus tones" [J. Acoust. Soc. Am. 102, 413-429 (1997)].
    Whitehead ML
    J Acoust Soc Am; 1998 May; 103(5 Pt 1):2740-2. PubMed ID: 9604365
    [No Abstract]   [Full Text] [Related]  

  • 18. Measuring stimulus-frequency otoacoustic emissions using swept tones.
    Kalluri R; Shera CA
    J Acoust Soc Am; 2013 Jul; 134(1):356-68. PubMed ID: 23862813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sources and mechanisms of DPOAE generation: implications for the prediction of auditory sensitivity.
    Shaffer LA; Withnell RH; Dhar S; Lilly DJ; Goodman SS; Harmon KM
    Ear Hear; 2003 Oct; 24(5):367-79. PubMed ID: 14534408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An investigation into the relationship between input-output nonlinearities and rate-induced nonlinearities of click-evoked otoacoustic emissions recorded using maximum length sequences.
    Lineton B; Thornton AR; Baker VJ
    Hear Res; 2006 Sep; 219(1-2):24-35. PubMed ID: 16839721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.