BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

860 related articles for article (PubMed ID: 9972669)

  • 21. Red blood cell (RBC) deformability, RBC aggregability and tissue oxygenation in hypertension.
    Cicco G; Pirrelli A
    Clin Hemorheol Microcirc; 1999; 21(3-4):169-77. PubMed ID: 10711739
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cellular and rheological factors contributing to sickle cell microvascular occlusion.
    Kurantsin-Mills J; Lessin LS
    Blood Cells; 1986; 12(1):249-70. PubMed ID: 3790735
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma.
    Faivre M; Abkarian M; Bickraj K; Stone HA
    Biorheology; 2006; 43(2):147-59. PubMed ID: 16687784
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rheology in the microcirculation in normal and low flow states.
    Chien S
    Adv Shock Res; 1982; 8():71-80. PubMed ID: 7136948
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microrheology of erythrocytes, blood viscosity, and the distribution of blood flow in the microcirculation.
    Schmid-Schönbein H
    Int Rev Physiol; 1976; 9():1-62. PubMed ID: 977248
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Capillary blood viscosity in microcirculation.
    Cortinovis A; Crippa A; Cavalli R; Corti M; Cattaneo L
    Clin Hemorheol Microcirc; 2006; 35(1-2):183-92. PubMed ID: 16899925
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Red blood cell velocity profiles in skeletal muscle venules at low flow rates are described by the Casson model.
    Das B; Bishop JJ; Kim S; Meiselman HJ; Johnson PC; Popel AS
    Clin Hemorheol Microcirc; 2007; 36(3):217-33. PubMed ID: 17361024
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The velocities of red cell and plasma flows through parenchymal microvessels of rat brain are decreased by pentobarbital.
    Wei L; Otsuka T; Acuff V; Bereczki D; Pettigrew K; Patlak C; Fenstermacher J
    J Cereb Blood Flow Metab; 1993 May; 13(3):487-97. PubMed ID: 8478407
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Blood banking-induced alteration of red blood cell flow properties.
    Relevy H; Koshkaryev A; Manny N; Yedgar S; Barshtein G
    Transfusion; 2008 Jan; 48(1):136-46. PubMed ID: 17900281
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hemorheological mechanisms in Alzheimer's disease.
    Chang CY; Liang HJ; Chow SY; Chen SM; Liu DZ
    Microcirculation; 2007 Aug; 14(6):627-34. PubMed ID: 17710633
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Association between blood rheology, thrombosis and cancer survival in patients with gynecologic malignancy.
    von Tempelhoff GF; Nieman F; Heilmann L; Hommel G
    Clin Hemorheol Microcirc; 2000; 22(2):107-30. PubMed ID: 10831062
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flow analysis of red blood cell through microvascular bifurcations.
    Amini JA; Fallahyan F
    Biomed Sci Instrum; 1997; 33():567-72. PubMed ID: 9731423
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Hemorheology, hemodynamics and microcirculation. 1].
    Larcan A; Stoltz JF
    J Mal Vasc; 1989; 14(3):240-53. PubMed ID: 2674316
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the effect of microstructural changes of blood on energy dissipation in Couette flow.
    Kaliviotis E; Yianneskis M
    Clin Hemorheol Microcirc; 2008; 39(1-4):235-42. PubMed ID: 18503131
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Radial dispersion of red blood cells in blood flowing through glass capillaries: the role of hematocrit and geometry.
    Lima R; Ishikawa T; Imai Y; Takeda M; Wada S; Yamaguchi T
    J Biomech; 2008 Jul; 41(10):2188-96. PubMed ID: 18589429
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Plasma-erythrocyte viscosity and evaluation of several pro- and anti-aggregating factors in NIDDM patients in metabolic decompensation state].
    Cortinovis A; Crippa A; Crippa M; Bosoni T; Moratti R
    Minerva Cardioangiol; 1992 Sep; 40(9):317-22. PubMed ID: 1470397
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A methodology to study the deformability of red blood cells flowing in microcapillaries in vitro.
    Tomaiuolo G; Preziosi V; Simeone M; Guido S; Ciancia R; Martinelli V; Rinaldi C; Rotoli B
    Ann Ist Super Sanita; 2007; 43(2):186-92. PubMed ID: 17634668
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Syllectometry: the effect of aggregometer geometry in the assessment of red blood cell shape recovery and aggregation.
    Dobbe JG; Streekstra GJ; Strackee J; Rutten MC; Stijnen JM; Grimbergen CA
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):97-106. PubMed ID: 12617529
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New trends in clinical hemorheology: an introduction to the concept of the hemorheological profile.
    Stoltz JF; Donner M
    Schweiz Med Wochenschr Suppl; 1991; 43():41-9. PubMed ID: 1843037
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation of red blood cell aggregation and blood viscosity by the covalent attachment of Pluronic copolymers.
    Armstrong JK; Meiselman HJ; Wenby RB; Fisher TC
    Biorheology; 2001; 38(2-3):239-47. PubMed ID: 11381178
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 43.