These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 9973413)
1. TFEC is a macrophage-restricted member of the microphthalmia-TFE subfamily of basic helix-loop-helix leucine zipper transcription factors. Rehli M; Lichanska A; Cassady AI; Ostrowski MC; Hume DA J Immunol; 1999 Feb; 162(3):1559-65. PubMed ID: 9973413 [TBL] [Abstract][Full Text] [Related]
2. Cloning and characterization of the murine genes for bHLH-ZIP transcription factors TFEC and TFEB reveal a common gene organization for all MiT subfamily members. Rehli M; Den Elzen N; Cassady AI; Ostrowski MC; Hume DA Genomics; 1999 Feb; 56(1):111-20. PubMed ID: 10036191 [TBL] [Abstract][Full Text] [Related]
3. Regulation of the MiTF/TFE bHLH-LZ transcription factors through restricted spatial expression and alternative splicing of functional domains. Kuiper RP; Schepens M; Thijssen J; Schoenmakers EF; van Kessel AG Nucleic Acids Res; 2004; 32(8):2315-22. PubMed ID: 15118077 [TBL] [Abstract][Full Text] [Related]
4. Mitf and Tfe3: members of a b-HLH-ZIP transcription factor family essential for osteoclast development and function. Hershey CL; Fisher DE Bone; 2004 Apr; 34(4):689-96. PubMed ID: 15050900 [TBL] [Abstract][Full Text] [Related]
5. Mitf and Tfe3, two members of the Mitf-Tfe family of bHLH-Zip transcription factors, have important but functionally redundant roles in osteoclast development. Steingrimsson E; Tessarollo L; Pathak B; Hou L; Arnheiter H; Copeland NG; Jenkins NA Proc Natl Acad Sci U S A; 2002 Apr; 99(7):4477-82. PubMed ID: 11930005 [TBL] [Abstract][Full Text] [Related]
6. Comparison of the expression and function of the transcription factor PU.1 (Spi-1 proto-oncogene) between murine macrophages and B lymphocytes. Ross IL; Dunn TL; Yue X; Roy S; Barnett CJ; Hume DA Oncogene; 1994 Jan; 9(1):121-32. PubMed ID: 8302571 [TBL] [Abstract][Full Text] [Related]
7. The microphthalmia transcription factor and the related helix-loop-helix zipper factors TFE-3 and TFE-C collaborate to activate the tartrate-resistant acid phosphatase promoter. Mansky KC; Sulzbacher S; Purdom G; Nelsen L; Hume DA; Rehli M; Ostrowski MC J Leukoc Biol; 2002 Feb; 71(2):304-10. PubMed ID: 11818452 [TBL] [Abstract][Full Text] [Related]
8. TFE3 transcription factor regulates the expression of MAFB during macrophage differentiation. Zanocco-Marani T; Vignudelli T; Parenti S; Gemelli C; Condorelli F; Martello A; Selmi T; Grande A; Ferrari S Exp Cell Res; 2009 Jul; 315(11):1798-808. PubMed ID: 19332055 [TBL] [Abstract][Full Text] [Related]
9. Assembly of a bZIP-bHLH transcription activation complex: formation of the yeast Cbf1-Met4-Met28 complex is regulated through Met28 stimulation of Cbf1 DNA binding. Kuras L; Barbey R; Thomas D EMBO J; 1997 May; 16(9):2441-51. PubMed ID: 9171357 [TBL] [Abstract][Full Text] [Related]
10. TFE3, a transcription factor homologous to microphthalmia, is a potential transcriptional activator of tyrosinase and TyrpI genes. Verastegui C; Bertolotto C; Bille K; Abbe P; Ortonne JP; Ballotti R Mol Endocrinol; 2000 Mar; 14(3):449-56. PubMed ID: 10707962 [TBL] [Abstract][Full Text] [Related]
11. Differential expression and distinct functions of IFN regulatory factor 4 and IFN consensus sequence binding protein in macrophages. Marecki S; Atchison ML; Fenton MJ J Immunol; 1999 Sep; 163(5):2713-22. PubMed ID: 10453013 [TBL] [Abstract][Full Text] [Related]
12. TFEC, a basic helix-loop-helix protein, forms heterodimers with TFE3 and inhibits TFE3-dependent transcription activation. Zhao GQ; Zhao Q; Zhou X; Mattei MG; de Crombrugghe B Mol Cell Biol; 1993 Aug; 13(8):4505-12. PubMed ID: 8336698 [TBL] [Abstract][Full Text] [Related]
13. Linking osteopetrosis and pycnodysostosis: regulation of cathepsin K expression by the microphthalmia transcription factor family. Motyckova G; Weilbaecher KN; Horstmann M; Rieman DJ; Fisher DZ; Fisher DE Proc Natl Acad Sci U S A; 2001 May; 98(10):5798-803. PubMed ID: 11331755 [TBL] [Abstract][Full Text] [Related]
14. Regulation of CSF-1 receptor expression. Hume DA; Yue X; Ross IL; Favot P; Lichanska A; Ostrowski MC Mol Reprod Dev; 1997 Jan; 46(1):46-52; discussion 52-3. PubMed ID: 8981363 [TBL] [Abstract][Full Text] [Related]
15. Expression of the gene for Dec2, a basic helix-loop-helix transcription factor, is regulated by a molecular clock system. Hamaguchi H; Fujimoto K; Kawamoto T; Noshiro M; Maemura K; Takeda N; Nagai R; Furukawa M; Honma S; Honma K; Kurihara H; Kato Y Biochem J; 2004 Aug; 382(Pt 1):43-50. PubMed ID: 15147242 [TBL] [Abstract][Full Text] [Related]
16. TFEC can function as a transcriptional activator of the nonmuscle myosin II heavy chain-A gene in transfected cells. Chung MC; Kim HK; Kawamoto S Biochemistry; 2001 Jul; 40(30):8887-97. PubMed ID: 11467950 [TBL] [Abstract][Full Text] [Related]
17. Lipopolysaccharide suppresses RANK gene expression in macrophages by down-regulating PU.1 and MITF. Ishii J; Kitazawa R; Mori K; McHugh KP; Morii E; Kondo T; Kitazawa S J Cell Biochem; 2008 Oct; 105(3):896-904. PubMed ID: 18759249 [TBL] [Abstract][Full Text] [Related]
18. E-box variants direct formation of distinct complexes with the basic helix-loop-helix protein ALF1. Bonven BJ; Nielsen AL; Nørby PL; Pedersen FS; Jørgensen P J Mol Biol; 1995 Jun; 249(3):564-75. PubMed ID: 7783212 [TBL] [Abstract][Full Text] [Related]
19. Human homologue of maid: A dominant inhibitory helix-loop-helix protein associated with liver-specific gene expression. Terai S; Aoki H; Ashida K; Thorgeirsson SS Hepatology; 2000 Aug; 32(2):357-66. PubMed ID: 10915743 [TBL] [Abstract][Full Text] [Related]
20. Tfe3 expression is closely associated to macrophage terminal differentiation of human hematopoietic myeloid precursors. Zanocco-Marani T; Vignudelli T; Gemelli C; Pirondi S; Testa A; Montanari M; Parenti S; Tenedini E; Grande A; Ferrari S Exp Cell Res; 2006 Dec; 312(20):4079-89. PubMed ID: 17046750 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]