These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 9973557)

  • 1. ErmE methyltransferase recognizes features of the primary and secondary structure in a motif within domain V of 23 S rRNA.
    Villsen ID; Vester B; Douthwaite S
    J Mol Biol; 1999 Feb; 286(2):365-74. PubMed ID: 9973557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ErmE methyltransferase recognition elements in RNA substrates.
    Vester B; Nielsen AK; Hansen LH; Douthwaite S
    J Mol Biol; 1998 Sep; 282(2):255-64. PubMed ID: 9735285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The conformation of 23S rRNA nucleotide A2058 determines its recognition by the ErmE methyltransferase.
    Vester B; Hansen LH; Douthwaite S
    RNA; 1995 Jul; 1(5):501-9. PubMed ID: 7489511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The activity of rRNA resistance methyltransferases assessed by MALDI mass spectrometry.
    Douthwaite S; Jensen RL; Kirpekar F
    Methods Mol Med; 2008; 142():223-37. PubMed ID: 18437318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Domain V of 23S rRNA contains all the structural elements necessary for recognition by the ErmE methyltransferase.
    Vester B; Douthwaite S
    J Bacteriol; 1994 Nov; 176(22):6999-7004. PubMed ID: 7961464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition of nucleotide G745 in 23 S ribosomal RNA by the rrmA methyltransferase.
    Hansen LH; Kirpekar F; Douthwaite S
    J Mol Biol; 2001 Jul; 310(5):1001-10. PubMed ID: 11501991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Negative in vitro selection identifies the rRNA recognition motif for ErmE methyltransferase.
    Nielsen AK; Douthwaite S; Vester B
    RNA; 1999 Aug; 5(8):1034-41. PubMed ID: 10445878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and biochemical characterization of the ErmSF macrolide-lincosamide-streptogramin B resistance factor protein expressed as a hexahistidine-tagged protein in Escherichia coli.
    Jin HJ; Yang YD
    Protein Expr Purif; 2002 Jun; 25(1):149-59. PubMed ID: 12071710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A common motif organizes the structure of multi-helix loops in 16 S and 23 S ribosomal RNAs.
    Leontis NB; Westhof E
    J Mol Biol; 1998 Oct; 283(3):571-83. PubMed ID: 9784367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. YccW is the m5C methyltransferase specific for 23S rRNA nucleotide 1962.
    Purta E; O'Connor M; Bujnicki JM; Douthwaite S
    J Mol Biol; 2008 Nov; 383(3):641-51. PubMed ID: 18786544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of antibiotics on large ribosomal subunit assembly reveals possible function of 5 S rRNA.
    Khaitovich P; Mankin AS
    J Mol Biol; 1999 Sep; 291(5):1025-34. PubMed ID: 10518940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Core sequence in the RNA motif recognized by the ErmE methyltransferase revealed by relaxing the fidelity of the enzyme for its target.
    Hansen LH; Vester B; Douthwaite S
    RNA; 1999 Jan; 5(1):93-101. PubMed ID: 9917069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of ErmC', an rRNA methyltransferase which mediates antibiotic resistance in bacteria.
    Bussiere DE; Muchmore SW; Dealwis CG; Schluckebier G; Nienaber VL; Edalji RP; Walter KA; Ladror US; Holzman TF; Abad-Zapatero C
    Biochemistry; 1998 May; 37(20):7103-12. PubMed ID: 9585521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erythromycin resistance mutations in ribosomal proteins L22 and L4 perturb the higher order structure of 23 S ribosomal RNA.
    Gregory ST; Dahlberg AE
    J Mol Biol; 1999 Jun; 289(4):827-34. PubMed ID: 10369764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The 3D arrangement of the 23 S and 5 S rRNA in the Escherichia coli 50 S ribosomal subunit based on a cryo-electron microscopic reconstruction at 7.5 A resolution.
    Mueller F; Sommer I; Baranov P; Matadeen R; Stoldt M; Wöhnert J; Görlach M; van Heel M; Brimacombe R
    J Mol Biol; 2000 Apr; 298(1):35-59. PubMed ID: 10756104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minimal substrate features for Erm methyltransferases defined by using a combinatorial oligonucleotide library.
    Hansen LH; Lobedanz S; Douthwaite S; Arar K; Wengel J; Kirpekar F; Vester B
    Chembiochem; 2011 Mar; 12(4):610-4. PubMed ID: 21264994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fine structure of the peptidyl transferase centre on 23 S-like rRNAs deduced from chemical probing of antibiotic-ribosome complexes.
    Rodriguez-Fonseca C; Amils R; Garrett RA
    J Mol Biol; 1995 Mar; 247(2):224-35. PubMed ID: 7707371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unusual resistance patterns in macrolide-resistant Streptococcus pyogenes harbouring erm(A).
    Malhotra-Kumar S; Mazzariol A; Van Heirstraeten L; Lammens C; de Rijk P; Cornaglia G; Goossens H
    J Antimicrob Chemother; 2009 Jan; 63(1):42-6. PubMed ID: 18952616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plausible Minimal Substrate for Erm Protein.
    Lee HJ; Park YI; Jin HJ
    Antimicrob Agents Chemother; 2020 Aug; 64(9):. PubMed ID: 32571809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ketolide resistance in Streptococcus pyogenes correlates with the degree of rRNA dimethylation by Erm.
    Douthwaite S; Jalava J; Jakobsen L
    Mol Microbiol; 2005 Oct; 58(2):613-22. PubMed ID: 16194243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.