These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 9973619)

  • 21. The archaeal COG1901/DUF358 SPOUT-methyltransferase members, together with pseudouridine synthase Pus10, catalyze the formation of 1-methylpseudouridine at position 54 of tRNA.
    Chatterjee K; Blaby IK; Thiaville PC; Majumder M; Grosjean H; Yuan YA; Gupta R; de Crécy-Lagard V
    RNA; 2012 Mar; 18(3):421-33. PubMed ID: 22274953
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two different mechanisms for tRNA ribose methylation in Archaea: a short survey.
    Clouet-d'Orval B; Gaspin C; Mougin A
    Biochimie; 2005; 87(9-10):889-95. PubMed ID: 16164996
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The crystal structure of Pyrococcus abyssi tRNA (uracil-54, C5)-methyltransferase provides insights into its tRNA specificity.
    Walbott H; Leulliot N; Grosjean H; Golinelli-Pimpaneau B
    Nucleic Acids Res; 2008 Sep; 36(15):4929-40. PubMed ID: 18653523
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural specificity of Rn nuclease I as probed on yeast tRNA(Phe) and tRNA(Asp).
    Przykorska A; el Adlouni C; Keith G; Szarkowski JW; Dirheimer G
    Nucleic Acids Res; 1992 Feb; 20(4):659-63. PubMed ID: 1542562
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mirror image alternative interaction patterns of the same tRNA with either class I arginyl-tRNA synthetase or class II aspartyl-tRNA synthetase.
    Sissler M; Eriani G; Martin F; Giegé R; Florentz C
    Nucleic Acids Res; 1997 Dec; 25(24):4899-906. PubMed ID: 9396794
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamics of RNA modification by a multi-site-specific tRNA methyltransferase.
    Hamdane D; Guelorget A; Guérineau V; Golinelli-Pimpaneau B
    Nucleic Acids Res; 2014 Oct; 42(18):11697-706. PubMed ID: 25217588
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel enzymatic pathway leading to 1-methylinosine modification in Haloferax volcanii tRNA.
    Grosjean H; Constantinesco F; Foiret D; Benachenhou N
    Nucleic Acids Res; 1995 Nov; 23(21):4312-9. PubMed ID: 7501451
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A tRNA(Glu) gene from the hyperthermophilic archaeon Pyrococcus furiosus contains the 3'-terminal CCA sequence of the mature tRNA.
    Cann IK; Ishino Y
    FEMS Microbiol Lett; 1998 Mar; 160(2):199-204. PubMed ID: 9532738
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enzymatic formation of N2,N2-dimethylguanosine in eukaryotic tRNA: importance of the tRNA architecture.
    Edqvist J; Stråby KB; Grosjean H
    Biochimie; 1995; 77(1-2):54-61. PubMed ID: 7599276
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Correlation between three-dimensional structure and chemical reactivity of transfer RNA.
    Robertus JD; Ladner JE; Finch JT; Rhodes D; Brown RS; Clark BF; Klug A
    Nucleic Acids Res; 1974 Jul; 1(7):927-32. PubMed ID: 10793725
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unexpected expansion of tRNA substrate recognition by the yeast m1G9 methyltransferase Trm10.
    Swinehart WE; Henderson JC; Jackman JE
    RNA; 2013 Aug; 19(8):1137-46. PubMed ID: 23793893
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 2'-O-methylation and inosine formation in the wobble position of anticodon-substituted tRNA-Phe in a homologous yeast in vitro system.
    Droogmans L; Grosjean H
    Biochimie; 1991; 73(7-8):1021-5. PubMed ID: 1742347
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two archaeal tRNase Z enzymes: similar but different.
    Späth B; Schubert S; Lieberoth A; Settele F; Schütz S; Fischer S; Marchfelder A
    Arch Microbiol; 2008 Sep; 190(3):301-8. PubMed ID: 18437358
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of modified nucleosides on tRNA structure as probed by two plant nucleases.
    Przykorska A
    Biochimie; 1995; 77(1-2):109-12. PubMed ID: 7599269
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Binding of tobramycin leads to conformational changes in yeast tRNA(Asp) and inhibition of aminoacylation.
    Walter F; Pütz J; Giegé R; Westhof E
    EMBO J; 2002 Feb; 21(4):760-8. PubMed ID: 11847123
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Arginine aminoacylation identity is context-dependent and ensured by alternate recognition sets in the anticodon loop of accepting tRNA transcripts.
    Sissler M; Giegé R; Florentz C
    EMBO J; 1996 Sep; 15(18):5069-76. PubMed ID: 8890180
    [TBL] [Abstract][Full Text] [Related]  

  • 37.
    Han L; Marcus E; D'Silva S; Phizicky EM
    RNA; 2017 Mar; 23(3):406-419. PubMed ID: 28003514
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism, specificity and general properties of the yeast enzyme catalysing the formation of inosine 34 in the anticodon of transfer RNA.
    Auxilien S; Crain PF; Trewyn RW; Grosjean H
    J Mol Biol; 1996 Oct; 262(4):437-58. PubMed ID: 8893855
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Yeast aspartyl-tRNA synthetase residues interacting with tRNA(Asp) identity bases connectively contribute to tRNA(Asp) binding in the ground and transition-state complex and discriminate against non-cognate tRNAs.
    Eriani G; Gangloff J
    J Mol Biol; 1999 Aug; 291(4):761-73. PubMed ID: 10452887
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Substrate recognition of tRNA (Guanosine-2'-)-methyltransferase from Thermus thermophilus HB27.
    Hori H; Yamazaki N; Matsumoto T; Watanabe Y; Ueda T; Nishikawa K; Kumagai I; Watanabe K
    J Biol Chem; 1998 Oct; 273(40):25721-7. PubMed ID: 9748240
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.