These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 9974146)
1. A technique for 125I-labelling of neurotrophins and the use of retrograde axonal transport as a bioassay. Reynolds AJ; Hendry IA Brain Res Brain Res Protoc; 1999 Jan; 3(3):308-12. PubMed ID: 9974146 [TBL] [Abstract][Full Text] [Related]
2. Axonal transport of neurotrophins by visceral afferent and efferent neurons of the vagus nerve of the rat. Helke CJ; Adryan KM; Fedorowicz J; Zhuo H; Park JS; Curtis R; Radley HE; Distefano PS J Comp Neurol; 1998 Mar; 393(1):102-17. PubMed ID: 9520105 [TBL] [Abstract][Full Text] [Related]
3. Prolonged recycling of internalized neurotrophins in the nerve terminal. Weible MW; Bartlett SE; Reynolds AJ; Hendry IA Cytometry; 2001 Mar; 43(3):182-8. PubMed ID: 11170104 [TBL] [Abstract][Full Text] [Related]
4. The neurotrophins BDNF, NT-3, and NGF display distinct patterns of retrograde axonal transport in peripheral and central neurons. DiStefano PS; Friedman B; Radziejewski C; Alexander C; Boland P; Schick CM; Lindsay RM; Wiegand SJ Neuron; 1992 May; 8(5):983-93. PubMed ID: 1375039 [TBL] [Abstract][Full Text] [Related]
5. Biological importance of retrograde axonal transport of nerve growth factor in adrenergic neurons. Paravicini U; Stoeckel K; Thoenen H Brain Res; 1975 Feb; 84(2):279-91. PubMed ID: 46156 [TBL] [Abstract][Full Text] [Related]
6. Pan-neurotrophin 1: a genetically engineered neurotrophic factor displaying multiple specificities in peripheral neurons in vitro and in vivo. Ilag LL; Curtis R; Glass D; Funakoshi H; Tobkes NJ; Ryan TE; Acheson A; Lindsay RM; Persson H; Yancopoulos GD Proc Natl Acad Sci U S A; 1995 Jan; 92(2):607-11. PubMed ID: 7831338 [TBL] [Abstract][Full Text] [Related]
7. The IODO-GEN method for labeling and the use of retrograde axonal transport to assay neurotrophins. Hendry IA; Reynolds AJ Methods Mol Biol; 2001; 169():243-50. PubMed ID: 11142015 [No Abstract] [Full Text] [Related]
8. Glial cell line-derived neurotrophic factor (GDNF) is a neurotrophic factor for sensory neurons: comparison with the effects of the neurotrophins. Matheson CR; Carnahan J; Urich JL; Bocangel D; Zhang TJ; Yan Q J Neurobiol; 1997 Jan; 32(1):22-32. PubMed ID: 8989660 [TBL] [Abstract][Full Text] [Related]
9. Neuronal injury increases retrograde axonal transport of the neurotrophins to spinal sensory neurons and motor neurons via multiple receptor mechanisms. Curtis R; Tonra JR; Stark JL; Adryan KM; Park JS; Cliffer KD; Lindsay RM; DiStefano PS Mol Cell Neurosci; 1998 Oct; 12(3):105-18. PubMed ID: 9790733 [TBL] [Abstract][Full Text] [Related]
10. Neurotrophin-3 is a target-derived neurotrophic factor for penile erection-inducing neurons. Hiltunen JO; Laurikainen A; Klinge E; Saarma M Neuroscience; 2005; 133(1):51-8. PubMed ID: 15893630 [TBL] [Abstract][Full Text] [Related]
11. Differential distribution of exogenous BDNF, NGF, and NT-3 in the brain corresponds to the relative abundance and distribution of high-affinity and low-affinity neurotrophin receptors. Anderson KD; Alderson RF; Altar CA; DiStefano PS; Corcoran TL; Lindsay RM; Wiegand SJ J Comp Neurol; 1995 Jun; 357(2):296-317. PubMed ID: 7665731 [TBL] [Abstract][Full Text] [Related]
12. [A comparison of the kinetic characters of NT-3, NT-4 and BDNF retrogradely transported in facial nerve]. Li Y; Chen Z; Wang Q; Liang Z; Kuang A; He G; Gao B; Lin D Hua Xi Yi Ke Da Xue Xue Bao; 2001 Dec; 32(4):535-7. PubMed ID: 12528541 [TBL] [Abstract][Full Text] [Related]
13. Influences of neurotrophins on mammalian motoneurons in vivo. Yan Q; Elliott JL; Matheson C; Sun J; Zhang L; Mu X; Rex KL; Snider WD J Neurobiol; 1993 Dec; 24(12):1555-77. PubMed ID: 8301265 [TBL] [Abstract][Full Text] [Related]
14. Anterograde axonal transport of BDNF and NT-3 by retinal ganglion cells: roles of neurotrophin receptors. Butowt R; von Bartheld CS Mol Cell Neurosci; 2005 May; 29(1):11-25. PubMed ID: 15866043 [TBL] [Abstract][Full Text] [Related]
15. The significance of retrograde axonal transport for the accumulation of systemically administered nerve growth factor (NGF) in the rat superior cervical ganglion. Stoeckel K; Guroff G; Schwab M; Thoenen H Brain Res; 1976 Jun; 109(2):271-84. PubMed ID: 58700 [TBL] [Abstract][Full Text] [Related]
16. Basic fibroblast growth factor: receptor-mediated internalization, metabolism, and anterograde axonal transport in retinal ganglion cells. Ferguson IA; Schweitzer JB; Johnson EM J Neurosci; 1990 Jul; 10(7):2176-89. PubMed ID: 1695944 [TBL] [Abstract][Full Text] [Related]
17. Retrograde transport of horseradish peroxidase in sensory and adrenergic neurons following injection into the anterior eye chamber. Arvidson B J Neurocytol; 1979 Dec; 8(6):751-64. PubMed ID: 317295 [TBL] [Abstract][Full Text] [Related]
18. Neurotrophic factor regulation of developing avian oculomotor neurons: differential effects of BDNF and GDNF. Steljes TP; Kinoshita Y; Wheeler EF; Oppenheim RW; von Bartheld CS J Neurobiol; 1999 Nov; 41(2):295-315. PubMed ID: 10512985 [TBL] [Abstract][Full Text] [Related]
19. Comparative dynamics of retrograde transport of nerve growth factor and horseradish peroxidase in rat lumbar dorsal root ganglia. Yip HK; Johnson EM J Neurocytol; 1986 Dec; 15(6):789-98. PubMed ID: 3819780 [TBL] [Abstract][Full Text] [Related]
20. Neurotrophin receptor expression is induced in a subpopulation of trigeminal neurons that label by retrograde transport of NGF or fluoro-gold following tooth injury. Wheeler EF; Naftel JP; Pan M; von Bartheld CS; Byers MR Brain Res Mol Brain Res; 1998 Oct; 61(1-2):23-38. PubMed ID: 9795112 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]