These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 9975133)

  • 1. Gap states, local moments, and magnetic dynamics in a Mott-Hubbard antiferromagnet doped with static impurities.
    Sen P; Basu S; Singh A
    Phys Rev B Condens Matter; 1994 Oct; 50(14):10381-10384. PubMed ID: 9975133
    [No Abstract]   [Full Text] [Related]  

  • 2. Impurity scattering of spin waves in a doped Mott-Hubbard antiferromagnet.
    Sen P; Singh A
    Phys Rev B Condens Matter; 1996 Jan; 53(1):328-334. PubMed ID: 9981981
    [No Abstract]   [Full Text] [Related]  

  • 3. Evolution of electronic structure of doped Mott insulators: reconstruction of poles and zeros of Green's function.
    Sakai S; Motome Y; Imada M
    Phys Rev Lett; 2009 Feb; 102(5):056404. PubMed ID: 19257530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hallmarks of the Mott-metal crossover in the hole-doped pseudospin-1/2 Mott insulator Sr2IrO4.
    Cao Y; Wang Q; Waugh JA; Reber TJ; Li H; Zhou X; Parham S; Park SR; Plumb NC; Rotenberg E; Bostwick A; Denlinger JD; Qi T; Hermele MA; Cao G; Dessau DS
    Nat Commun; 2016 Apr; 7():11367. PubMed ID: 27102065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bad-Metal Behavior Reveals Mott Quantum Criticality in Doped Hubbard Models.
    Vučičević J; Tanasković D; Rozenberg MJ; Dobrosavljević V
    Phys Rev Lett; 2015 Jun; 114(24):246402. PubMed ID: 26196992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mott gap excitations and resonant inelastic x-ray scattering in doped cuprates.
    Tsutsui K; Tohyama T; Maekawa S
    Phys Rev Lett; 2003 Sep; 91(11):117001. PubMed ID: 14525453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mott transition in kagomé lattice Hubbard model.
    Ohashi T; Kawakami N; Tsunetsugu H
    Phys Rev Lett; 2006 Aug; 97(6):066401. PubMed ID: 17026182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-magnon Raman scattering in a Mott-Hubbard antiferromagnet.
    Basu S; Singh A
    Phys Rev B Condens Matter; 1996 Sep; 54(9):6356-6363. PubMed ID: 9986653
    [No Abstract]   [Full Text] [Related]  

  • 9. Spin-wave spectral properties of the Mott-Hubbard antiferromagnet: The intermediate-coupling regime.
    Singh A
    Phys Rev B Condens Matter; 1993 Sep; 48(9):6668-6671. PubMed ID: 10009228
    [No Abstract]   [Full Text] [Related]  

  • 10. Self-consistent study of quantum spin fluctuations in the Mott-Hubbard antiferromagnet.
    Singh A
    Phys Rev B Condens Matter; 1993 Sep; 48(10):7700-7703. PubMed ID: 10006946
    [No Abstract]   [Full Text] [Related]  

  • 11. Ultrafast quenching of the exchange interaction in a Mott insulator.
    Mentink JH; Eckstein M
    Phys Rev Lett; 2014 Aug; 113(5):057201. PubMed ID: 25126933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cold-atom Fermi-Hubbard antiferromagnet.
    Mazurenko A; Chiu CS; Ji G; Parsons MF; Kanász-Nagy M; Schmidt R; Grusdt F; Demler E; Greif D; Greiner M
    Nature; 2017 May; 545(7655):462-466. PubMed ID: 28541324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collapse of the Mott Gap and Emergence of a Nodal Liquid in Lightly Doped Sr(2)IrO(4).
    de la Torre A; McKeown Walker S; Bruno FY; Riccó S; Wang Z; Gutierrez Lezama I; Scheerer G; Giriat G; Jaccard D; Berthod C; Kim TK; Hoesch M; Hunter EC; Perry RS; Tamai A; Baumberger F
    Phys Rev Lett; 2015 Oct; 115(17):176402. PubMed ID: 26551128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast charge recombination in a photoexcited Mott-Hubbard insulator.
    Lenarčič Z; Prelovšek P
    Phys Rev Lett; 2013 Jul; 111(1):016401. PubMed ID: 23863016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exciton doublet in the Mott-Hubbard insulator LiCuVO4 identified by spectral ellipsometry.
    Matiks Y; Horsch P; Kremer RK; Keimer B; Boris AV
    Phys Rev Lett; 2009 Oct; 103(18):187401. PubMed ID: 19905830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mott insulators and the doping-induced Mott transition within DMFT: exact results for the one-band Hubbard model.
    Logan DE; Galpin MR
    J Phys Condens Matter; 2016 Jan; 28(2):025601. PubMed ID: 26658417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spin-vibronic superexchange in Mott-Hubbard fullerides.
    Chibotaru LF
    Phys Rev Lett; 2005 May; 94(18):186405. PubMed ID: 15904389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diluted graphene antiferromagnet.
    Brey L; Fertig HA; Das Sarma S
    Phys Rev Lett; 2007 Sep; 99(11):116802. PubMed ID: 17930459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colossal Magnetoresistance in a Mott Insulator via Magnetic Field-Driven Insulator-Metal Transition.
    Zhu M; Peng J; Zou T; Prokes K; Mahanti SD; Hong T; Mao ZQ; Liu GQ; Ke X
    Phys Rev Lett; 2016 May; 116(21):216401. PubMed ID: 27284665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nodal-antinodal dichotomy and the two gaps of a superconducting doped Mott insulator.
    Civelli M; Capone M; Georges A; Haule K; Parcollet O; Stanescu TD; Kotliar G
    Phys Rev Lett; 2008 Feb; 100(4):046402. PubMed ID: 18352310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.