These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 9975638)

  • 1. Theoretical study of the anharmonic decay of nonequilibrium LO phonons in semiconductor structures.
    Usher S; Srivastava GP
    Phys Rev B Condens Matter; 1994 Nov; 50(19):14179-14186. PubMed ID: 9975638
    [No Abstract]   [Full Text] [Related]  

  • 2. The anharmonic phonon decay rate in group-III nitrides.
    Srivastava GP
    J Phys Condens Matter; 2009 Apr; 21(17):174205. PubMed ID: 21825409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct measurement of the lifetime of optical phonons in single-walled carbon nanotubes.
    Song D; Wang F; Dukovic G; Zheng M; Semke ED; Brus LE; Heinz TF
    Phys Rev Lett; 2008 Jun; 100(22):225503. PubMed ID: 18643430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rigid ion model of high field transport in GaN.
    Yamakawa S; Akis R; Faralli N; Saraniti M; Goodnick SM
    J Phys Condens Matter; 2009 Apr; 21(17):174206. PubMed ID: 21825410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupled bloch-phonon oscillations in semiconductor superlattices.
    Dekorsy T; Bartels A; Kurz H; Kohler K; Hey R; Ploog K
    Phys Rev Lett; 2000 Jul; 85(5):1080-3. PubMed ID: 10991479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Population relaxation time of nonequilibrium LO phonons and electron-phonon interactions in GaAs-AlxGa1-xAs multiple-quantum-well structures.
    Tsen KT; Morkoc H
    Phys Rev B Condens Matter; 1986 Sep; 34(6):4412-4414. PubMed ID: 9940227
    [No Abstract]   [Full Text] [Related]  

  • 7. Anharmonic interactions of nonequilibrium phonons in LiYF4:Pr3+.
    Wang Xj; Dennis WM; Yen WM
    Phys Rev B Condens Matter; 1992 Oct; 46(13):8168-8172. PubMed ID: 10002574
    [No Abstract]   [Full Text] [Related]  

  • 8. Longer InN phonon lifetimes in nanowires.
    Domènech-Amador N; Cuscó R; Artús L; Stoica T; Calarco R
    Nanotechnology; 2012 Feb; 23(8):085702. PubMed ID: 22293460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of size-dependent thermalization in CdSe nanocrystals using time-resolved photoluminescence spectroscopy.
    Hannah DC; Dunn NJ; Ithurria S; Talapin DV; Chen LX; Pelton M; Schatz GC; Schaller RD
    Phys Rev Lett; 2011 Oct; 107(17):177403. PubMed ID: 22107581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-resolved Raman scattering of nonequilibrium LO phonons in GaAs quantum wells.
    Tsen KT; Joshi RP; Ferry DK; Morkoc H
    Phys Rev B Condens Matter; 1989 Jan; 39(2):1446-1449. PubMed ID: 9948351
    [No Abstract]   [Full Text] [Related]  

  • 11. Direct observation of a reduced cooling rate of hot carriers in the presence of nonequilibrium LO phonons in GaAs:As.
    Zhou XQ; van Driel HM ; Rühle WW; Ploog K
    Phys Rev B Condens Matter; 1992 Dec; 46(24):16148-16151. PubMed ID: 10003755
    [No Abstract]   [Full Text] [Related]  

  • 12. Many-body effects in a nonequilibrium electron-lattice system: Coupling of quasiparticle excitations and LO phonons.
    Jain JK; Jalabert R; Das Sarma S
    Phys Rev Lett; 1988 Jan; 60(4):353-356. PubMed ID: 10038520
    [No Abstract]   [Full Text] [Related]  

  • 13. Direct Measurement of Anharmonic Decay Channels of a Coherent Phonon.
    Teitelbaum SW; Henighan T; Huang Y; Liu H; Jiang MP; Zhu D; Chollet M; Sato T; Murray ÉD; Fahy S; O'Mahony S; Bailey TP; Uher C; Trigo M; Reis DA
    Phys Rev Lett; 2018 Sep; 121(12):125901. PubMed ID: 30296113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal conductivity of anharmonic lattices: effective phonons and quantum corrections.
    He D; Buyukdagli S; Hu B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061103. PubMed ID: 19256798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat transport enhanced by optical phonons in one-dimensional anharmonic lattices with alternating bonds.
    Xiong D; Zhang Y; Zhao H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052128. PubMed ID: 24329235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anharmonic decay and the propagation of phonons in an isotopically pure crystal at low temperatures: Application to dark-matter detection.
    Maris HJ; Tamura Si
    Phys Rev B Condens Matter; 1993 Jan; 47(2):727-739. PubMed ID: 10005547
    [No Abstract]   [Full Text] [Related]  

  • 17. Terahertz Driven Amplification of Coherent Optical Phonons in GaAs Coupled to a Metasurface.
    Woerner M; Somma C; Reimann K; Elsaesser T; Liu PQ; Yang Y; Reno JL; Brener I
    Phys Rev Lett; 2019 Mar; 122(10):107402. PubMed ID: 30932659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dispersive phonon linewidths: the E2 phonons of ZnO.
    Serrano J; Manjón FJ; Romero AH; Widulle F; Lauck R; Cardona M
    Phys Rev Lett; 2003 Feb; 90(5):055510. PubMed ID: 12633376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anharmonic decay time, isotopic scattering time, and inhomogeneous line broadening of optical phonons in 70Ge, 76Ge, and natural Ge crystals.
    Fuchs HD; Grein CH; Devlen RI; Kuhl J; Cardona M
    Phys Rev B Condens Matter; 1991 Oct; 44(16):8633-8642. PubMed ID: 9998819
    [No Abstract]   [Full Text] [Related]  

  • 20. All-Phononic Digital Transistor on the Basis of Gap-Soliton Dynamics in an Anharmonic Oscillator Ladder.
    Malishava M; Khomeriki R
    Phys Rev Lett; 2015 Sep; 115(10):104301. PubMed ID: 26382679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.