BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 9976)

  • 1. Steady state kinetic analysis of the mechanism of guanosine triphosphate hydrolysis catalyzed by Escherichia coli elongation factor G and the ribosome.
    Rohrback MS; Bodley JW
    Biochemistry; 1976 Oct; 15(21):4565-9. PubMed ID: 9976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equilibrium measurements of the interactions of guanine nucleotides with Escherichia coli elongation factor G and the ribosome.
    Baca OG; Rohrbach MS; Bodley JW
    Biochemistry; 1976 Oct; 15(21):4570-4. PubMed ID: 788779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of guanosine 5'-di- and -triphosphate derivatives with modified terminal phosphates: effect on ribosome-elongation factor G-dependent reactions.
    Eckstein F; Bruns W; Parmeggiani A
    Biochemistry; 1975 Nov; 14(23):5225-32. PubMed ID: 1103967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Stoichiometry of GTP breakdown during peptide synthesis on the ribosome. Stoichiometry of GTP hydrolysis during elongation of polyphenylalanine on polyuridylic acid].
    Kakhniashvili DG; Smailov SK; Gogiia IN; Gavrilova LP
    Biokhimiia; 1983 Jun; 48(6):959-69. PubMed ID: 6349702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilization by the 30S ribosomal subunit of the interaction of 50S subunits with elongation factor G and guanine nucleotide.
    Marsh RC; Parmeggiani A
    Biochemistry; 1977 Apr; 16(7):1278-83. PubMed ID: 321016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of guanosine nucleotides with elongation factor 2. II. Effect of ribosomes and magnesium ions on guanosine diphosphate and guanosine triphosphate binding to the enzyme.
    Henriksen O; Robinson EA; Maxwell ES
    J Biol Chem; 1975 Jan; 250(2):725-30. PubMed ID: 1112785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of the ribosome-dependent uncoupled GTPase reaction catalyzed by polypeptide chain elongation factor G.
    Arai N; Kaziro Y
    J Biochem; 1975 Feb; 77(2):439-47. PubMed ID: 165176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity of the 30-S CsCl core in elongation-factor-dependent GTP hydrolysis.
    Sander G; Marsh RC; Parmeggiani A
    Eur J Biochem; 1976 Jan; 61(1):317-23. PubMed ID: 173554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of guanine nucleotides in protein synthesis. Elongation factor G and guanosine 5'-triphosphate,3'-diphosphate.
    Hamel E; Cashel M
    Proc Natl Acad Sci U S A; 1973 Nov; 70(11):3250-4. PubMed ID: 4594040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome.
    Rodnina MV; Savelsbergh A; Katunin VI; Wintermeyer W
    Nature; 1997 Jan; 385(6611):37-41. PubMed ID: 8985244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of 50S ribosomal proteins L6 and L10 in the ribosome dependent GTPase activity of elongation factor G.
    Schrier PI; Maassen JA; Möller W
    Biochem Biophys Res Commun; 1973 Jul; 53(1):90-8. PubMed ID: 4582373
    [No Abstract]   [Full Text] [Related]  

  • 12. Mechanism of ribosomal translocation. Translocation limits the rate of Escherichia coli elongation factor G-promoted GTP hydrolysis.
    Robertson JM; Urbanke C; Chinali G; Wintermeyer W; Parmeggiani A
    J Mol Biol; 1986 Jun; 189(4):653-62. PubMed ID: 3537310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role and timing of GTP binding and hydrolysis during EF-G-dependent tRNA translocation on the ribosome.
    Wilden B; Savelsbergh A; Rodnina MV; Wintermeyer W
    Proc Natl Acad Sci U S A; 2006 Sep; 103(37):13670-5. PubMed ID: 16940356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective chemical modification of Escherichia coli elongation factor G. N-Ethylmaleimide modification of a cysteine essential for nucleotide binding.
    Rohrbach MS; Bodley JW
    J Biol Chem; 1976 Feb; 251(4):930-3. PubMed ID: 765342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective chemical modification of Escherichia coli elongation factor G: butanedione modification of an arginine essential for nucleotide binding.
    Rohrbach MS; Bodley JW
    Biochemistry; 1977 Apr; 16(7):1360-3. PubMed ID: 14679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of guanosine-nucleotide.elongation-factor-G complexes produced during the decay of guanosine-nucleotide.elongation-factor-G.Ribosome complexes.
    Girbes T; Vázquez D; Modolell J
    Eur J Biochem; 1977 Dec; 81(3):473-81. PubMed ID: 340226
    [No Abstract]   [Full Text] [Related]  

  • 17. Synergism between the GTPase activities of EF-Tu.GTP and EF-G.GTP on empty ribosomes. Elongation factors as stimulators of the ribosomal oscillation between two conformations.
    Mesters JR; Potapov AP; de Graaf JM; Kraal B
    J Mol Biol; 1994 Oct; 242(5):644-54. PubMed ID: 7932721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome.
    Pape T; Wintermeyer W; Rodnina MV
    EMBO J; 1998 Dec; 17(24):7490-7. PubMed ID: 9857203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding interaction between Tet(M) and the ribosome: requirements for binding.
    Dantley KA; Dannelly HK; Burdett V
    J Bacteriol; 1998 Aug; 180(16):4089-92. PubMed ID: 9696754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The G222D mutation in elongation factor Tu inhibits the codon-induced conformational changes leading to GTPase activation on the ribosome.
    Vorstenbosch E; Pape T; Rodnina MV; Kraal B; Wintermeyer W
    EMBO J; 1996 Dec; 15(23):6766-74. PubMed ID: 8978702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.