These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 9976767)

  • 1. Theory of the dispersion of ultrafast nonlinear refraction in zinc-blende semiconductors below the band edge.
    Hutchings DC; Wherrett BS
    Phys Rev B Condens Matter; 1994 Aug; 50(7):4622-4630. PubMed ID: 9976767
    [No Abstract]   [Full Text] [Related]  

  • 2. Theory of the anisotropy of ultrafast nonlinear refraction in zinc-blende semiconductors.
    Hutchings DC; Wherrett BS
    Phys Rev B Condens Matter; 1995 Sep; 52(11):8150-8159. PubMed ID: 9979813
    [No Abstract]   [Full Text] [Related]  

  • 3. Three-photon absorption spectra of zinc blende semiconductors: theory and experiment.
    Cirloganu CM; Olszak PD; Padilha LA; Webster S; Hagan DJ; Van Stryland EW
    Opt Lett; 2008 Nov; 33(22):2626-8. PubMed ID: 19015689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-photon absorption spectra of zinc blende semiconductors: theory and experiment: erratum.
    Cirloganu CM; Olszak PD; Padilha LA; Webster S; Hagan DJ; Van Stryland EW
    Opt Lett; 2020 Feb; 45(4):1025-1026. PubMed ID: 32058534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors.
    Wang K; Feng Y; Chang C; Zhan J; Wang C; Zhao Q; Coleman JN; Zhang L; Blau WJ; Wang J
    Nanoscale; 2014 Sep; 6(18):10530-5. PubMed ID: 25097043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dispersion of nonlinear refraction and two-photon absorption using a white-light continuum Z-scan.
    Balu M; Hales J; Hagan D; Van Stryland E
    Opt Express; 2005 May; 13(10):3594-9. PubMed ID: 19495265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of spontaneous spin-splitting in the band structure of an n-type zinc-blende ferromagnetic semiconductor.
    Anh LD; Hai PN; Tanaka M
    Nat Commun; 2016 Dec; 7():13810. PubMed ID: 27991502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spin-polarized structural, electronic, and magnetic properties of diluted magnetic semiconductors Cd(1-x)Mn(x)S and Cd(1-x)Mn(x)Se in zinc blende phase.
    Nazir S; Ikram N; Tanveer M; Shaukat A; Saeed Y; Reshak AH
    J Phys Chem A; 2009 May; 113(20):6022-7. PubMed ID: 19438272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous formation of wurzite-CdS/zinc blende-CdTe heterodimers through a partial anion exchange reaction.
    Saruyama M; So YG; Kimoto K; Taguchi S; Kanemitsu Y; Teranishi T
    J Am Chem Soc; 2011 Nov; 133(44):17598-601. PubMed ID: 21972931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ab initio prediction of conduction band spin splitting in zinc blende semiconductors.
    Chantis AN; van Schilfgaarde M; Kotani T
    Phys Rev Lett; 2006 Mar; 96(8):086405. PubMed ID: 16606206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray-absorption near-edge structure of transition-metal zinc-blende semiconductors: Calculation versus experimental data and the pre-edge feature.
    McKeown DA
    Phys Rev B Condens Matter; 1992 Feb; 45(6):2648-2653. PubMed ID: 10001811
    [No Abstract]   [Full Text] [Related]  

  • 12. Analytical descriptions of the band structure of direct-band-gap zinc-blende-structure semiconductors in the k.
    Drouhin H; Peretti J
    Phys Rev B Condens Matter; 1991 Oct; 44(15):7993-7998. PubMed ID: 9998730
    [No Abstract]   [Full Text] [Related]  

  • 13. Nonlinear refraction at the absorption edge in InAs.
    Poole CD; Garmire E
    Opt Lett; 1984 Aug; 9(8):356-8. PubMed ID: 19721597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [001] strain-induced band mixing in zinc-blende semiconductors: Intravalence versus upper-conduction-valence band effects.
    Bertho D; Jancu JM; Jouanin C
    Phys Rev B Condens Matter; 1994 Dec; 50(23):16956-16963. PubMed ID: 9976091
    [No Abstract]   [Full Text] [Related]  

  • 15. Why does wurtzite form in nanowires of III-V zinc blende semiconductors?
    Glas F; Harmand JC; Patriarche G
    Phys Rev Lett; 2007 Oct; 99(14):146101. PubMed ID: 17930689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical anisotropy of zinc-blende semiconductors in an electric field.
    Foreman BA
    Phys Rev Lett; 2000 Mar; 84(11):2505-8. PubMed ID: 11018921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches.
    Hsu YY; Suen NT; Chang CC; Hung SF; Chen CL; Chan TS; Dong CL; Chan CC; Chen SY; Chen HM
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22558-69. PubMed ID: 26402651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationships between the band gaps of the zinc-blende and wurtzite modifications of semiconductors.
    Yeh CY; Wei SH; Zunger A
    Phys Rev B Condens Matter; 1994 Jul; 50(4):2715-2718. PubMed ID: 9976506
    [No Abstract]   [Full Text] [Related]  

  • 19. Relativistic band structure and spin-orbit splitting of zinc-blende-type semiconductors.
    Cardona M; Christensen NE; Fasol G
    Phys Rev B Condens Matter; 1988 Jul; 38(3):1806-1827. PubMed ID: 9946466
    [No Abstract]   [Full Text] [Related]  

  • 20. Terms linear in k in the band structure of zinc-blende-type semiconductors.
    Cardona M; Christensen NE; Fasol G
    Phys Rev Lett; 1986 Jun; 56(26):2831-2833. PubMed ID: 10033106
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.