BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 9977)

  • 1. Nuclear magnetic resonance determination of intramolecular distances in bovine pancreatic trypsin inhibitor using nitrotyrosine chelation of lanthanides.
    Marinetti TD; Snyder GH; Sykes BD
    Biochemistry; 1976 Oct; 15(21):4600-8. PubMed ID: 9977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrotyrosine chelation of nuclear magnetic resonance shift probes in proteins: application to bovine pancreatic trypsin inhibitor.
    Marinetti TD; Snyder GH; Sykes BD
    Biochemistry; 1977 Feb; 16(4):647-53. PubMed ID: 556950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complete tyrosine assignments in the high-field 1H nuclear magnetic resonance spectrum of bovine pancreatic trypsin inhibitor selectively reduced and carboxamidomethylated at cystine 14-38.
    Snyder GH; Rowan R; Sykes BD
    Biochemistry; 1976 Jun; 15(11):2275-83. PubMed ID: 6043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complete tyrosine assignments in the high field 1H nuclear magnetic resonance spectrum of the bovine pancreatic trypsin inhibitor.
    Snyder GH; Rowan R; Karplus S; Sykes BD
    Biochemistry; 1975 Aug; 14(17):3765-77. PubMed ID: 240394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study of the lysyl residues in the basic pancreatic trypsin inhibitor using 1H nuclear magnetic resonance at 360 Mhz.
    Brown LR; De Marco A; Wagner G; Wüthrich K
    Eur J Biochem; 1976 Feb; 62(1):103-7. PubMed ID: 2474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1H nuclear-magnetic-resonance studies of the porcine-pancreatic secretory trypsin inhibitor at 270 MHz.
    De Marco A; Menegatti E; Guarneri M
    Eur J Biochem; 1979 Dec; 102(1):185-94. PubMed ID: 520321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural interpretation of lanthanide binding to the basic pancreatic trypsin inhibitor by 1H NMR at 360 MHz.
    Perkins SJ; Wüthrich K
    Biochim Biophys Acta; 1978 Oct; 536(2):406-20. PubMed ID: 30488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH and temperature effects on the molecular conformation of the porcine pancreatic secretory trypsin inhibitor as detected by hydrogen-1 nuclear magnetic resonance.
    De Marco A; Menegatti E; Guarneri M
    Biochemistry; 1982 Jan; 21(2):222-9. PubMed ID: 6803827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of electrostatic interactions and their relationship to conformation and stability of bovine pancreatic trypsin inhibitor.
    March KL; Maskalick DG; England RD; Friend SH; Gurd FR
    Biochemistry; 1982 Oct; 21(21):5241-51. PubMed ID: 7171553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The location of the calcium ion binding site in bovine alpha-trypsin and beta-trypsin using lanthanide ion probes.
    Abbott F; Gomez JE; Birnbaum ER; Darnall DW
    Biochemistry; 1975 Nov; 14(22):4935-43. PubMed ID: 1237314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of the lanthanide- and hapten-binding sites in the Fv fragment from the myeloma protein MOPC 315.
    Dwek RA; Givol D; Jones R; McLaughlin AC; Wain-Hobson S; White AI; Wright C
    Biochem J; 1976 Apr; 155(1):37-53. PubMed ID: 7239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen kinetics of peptide amide protons at the bovine pancreatic trypsin inhibitor protein-solvent interface.
    Tüchsen E; Woodward C
    J Mol Biol; 1985 Sep; 185(2):405-19. PubMed ID: 2414451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Determination and comparative analysis of the conformation of bovine pancreatic trypsin inhibitor and trypsin inhibitors E and K from the data of two-dimensional 1H-NMR spectroscopy].
    Sherman SA; Andrianov AM
    Mol Biol (Mosk); 1985; 19(5):1301-9. PubMed ID: 4079926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 1H-NMR studies of the structure and stability of the bovine pancreatic secretory trypsin inhibitor.
    De Marco A; Menegatti E; Guarneri M
    J Biol Chem; 1982 Jul; 257(14):8337-42. PubMed ID: 7085670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ring current effects in the conformation dependent NMR chemical shifts of aliphatic protons in the basic pancreatic trypsin inhibitor.
    Perkins SJ; Wüthrich K
    Biochim Biophys Acta; 1979 Feb; 576(2):409-23. PubMed ID: 427198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Individual assignments of the methyl resonances in the 1H nuclear magnetic resonance spectrum of the basic pancreatic trypsin inhibitor.
    Wüthrich K; Wagner G; Richarz R; Perkins SJ
    Biochemistry; 1978 Jun; 17(12):2253-63. PubMed ID: 307961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative determination of the conformation of ATP in aqueous solution using the lanthanide cations as nuclear-magnetic-resonance probes.
    Tanswell P; Thornton JM; Korda AV; Williams RJ
    Eur J Biochem; 1975 Sep; 57(1):135-45. PubMed ID: 240716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-dimensional 1H NMR of two chemically modified analogs of the basic pancreatic trypsin inhibitor. Sequence-specific resonance assignments and sequence location of conformation changes relative to the native protein.
    Stassinopoulou CI; Wagner G; Wüthrich K
    Eur J Biochem; 1984 Dec; 145(2):423-30. PubMed ID: 6209138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion-binding to phospholipids. Interaction of calcium and lanthanide ions with phosphatidylcholine (lecithin).
    Hauser H; Phillips MC; Levine BA; Williams RJ
    Eur J Biochem; 1975 Oct; 58(1):133-44. PubMed ID: 241630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multinuclear magnetic resonance studies on the calcium (II) binding site in trypsin, chymotrypsin, and subtilisin.
    Adebodun F; Jordan F
    Biochemistry; 1989 Sep; 28(19):7524-31. PubMed ID: 2692702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.