These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
81 related articles for article (PubMed ID: 9977057)
1. Positron stopping in elemental systems: Monte Carlo calculations and scaling properties. Ghosh VJ; Aers GC Phys Rev B Condens Matter; 1995 Jan; 51(1):45-59. PubMed ID: 9977057 [No Abstract] [Full Text] [Related]
2. Evaluation of uncertainty-based stopping criteria for monte carlo calculations of intensity-modulated radiotherapy and arc therapy patient dose distributions. Vanderstraeten B; Olteanu AM; Reynaert N; Leal A; De Neve W; Thierens H Int J Radiat Oncol Biol Phys; 2007 Oct; 69(2):628-37. PubMed ID: 17869677 [TBL] [Abstract][Full Text] [Related]
3. Calculation of water/air stopping-power ratios using EGS4 with explicit treatment of electron-positron differences. Malamut C; Rogers DW; Bielajew AF Med Phys; 1991; 18(6):1222-8. PubMed ID: 1753907 [TBL] [Abstract][Full Text] [Related]
4. The impact of uncertainties in the CT conversion algorithm when predicting proton beam ranges in patients from dose and PET-activity distributions. España S; Paganetti H Phys Med Biol; 2010 Dec; 55(24):7557-71. PubMed ID: 21098912 [TBL] [Abstract][Full Text] [Related]
5. Basic considerations for Monte Carlo calculations in soil. Wielopolski L; Song Z; Orion I; Hanson AL; Hendrey G Appl Radiat Isot; 2005 Jan; 62(1):97-107. PubMed ID: 15498691 [TBL] [Abstract][Full Text] [Related]
6. A general method to derive tissue parameters for Monte Carlo dose calculation with multi-energy CT. Lalonde A; Bouchard H Phys Med Biol; 2016 Nov; 61(22):8044-8069. PubMed ID: 27779137 [TBL] [Abstract][Full Text] [Related]
7. Confidence and efficiency scaling in variational quantum Monte Carlo calculations. Delyon F; Bernu B; Holzmann M Phys Rev E; 2017 Feb; 95(2-1):023307. PubMed ID: 28297981 [TBL] [Abstract][Full Text] [Related]
8. Assigning nonelastic nuclear interaction cross sections to Hounsfield units for Monte Carlo treatment planning of proton beams. Palmans H; Verhaegen F Phys Med Biol; 2005 Mar; 50(5):991-1000. PubMed ID: 15798271 [TBL] [Abstract][Full Text] [Related]
9. Development of a surrogate model for elemental analysis using a natural gamma ray spectroscopy tool. Zhang Q Appl Radiat Isot; 2015 Oct; 104():5-14. PubMed ID: 26123106 [TBL] [Abstract][Full Text] [Related]
10. Uncertainties in Monte Carlo-based absorbed dose calculations for an experimental benchmark. Renner F; Wulff J; Kapsch RP; Zink K Phys Med Biol; 2015 Oct; 60(19):7637-53. PubMed ID: 26389610 [TBL] [Abstract][Full Text] [Related]
11. Positron follow-up in liquid water: I. A new Monte Carlo track-structure code. Champion C; Le Loirec C Phys Med Biol; 2006 Apr; 51(7):1707-23. PubMed ID: 16552099 [TBL] [Abstract][Full Text] [Related]
12. [Benchmark experiment to verify radiation transport calculations for dosimetry in radiation therapy]. Renner F Z Med Phys; 2016 Sep; 26(3):209-23. PubMed ID: 26422577 [TBL] [Abstract][Full Text] [Related]
13. Developing a model of DNA replication to be used for Monte Carlo calculations that predict the sizes and shapes of molecules resulting from DNA double-strand breaks induced by X irradiation during DNA synthesis. Dewey WC; Albright N Radiat Res; 1997 Nov; 148(5):421-34. PubMed ID: 9355867 [TBL] [Abstract][Full Text] [Related]
14. SU-E-T-486: Volume and Location Dependence on the Difference Between Monte Carlo and Pencil Beam Dose Calculations for Lung Stereotactic Body Radiation Therapy. Zhuang T; Djemil T; Qi P; Magnelli A; Stephans K; Videtic G; Xia P Med Phys; 2012 Jun; 39(6Part17):3817. PubMed ID: 28517485 [TBL] [Abstract][Full Text] [Related]
15. Use of Monte Carlo modeling to aid interpretation and quantification of the low energy-loss electron yield at low primary energies. Bonet C; Pratt A; El-Gomati MM; Matthew JA; Tear SP Microsc Microanal; 2008 Oct; 14(5):439-50. PubMed ID: 18793488 [TBL] [Abstract][Full Text] [Related]
16. Scaling of non-Markovian Monte Carlo wave-function methods. Piilo J; Maniscalco S; Messina A; Petruccione F Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056701. PubMed ID: 16089685 [TBL] [Abstract][Full Text] [Related]
17. Toward automated and personalized organ dose determination in CT examinations - A comparison of two tissue characterization models for Monte Carlo organ dose calculation with a Therapy Planning System. Källman HE; Traneus E; Ahnesjö A Med Phys; 2019 Feb; 46(2):1012-1023. PubMed ID: 30582891 [TBL] [Abstract][Full Text] [Related]
18. Efficiency of Monte Carlo sampling in chaotic systems. Leitão JC; Lopes JM; Altmann EG Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052916. PubMed ID: 25493867 [TBL] [Abstract][Full Text] [Related]
19. Clinical implementation of a Monte Carlo treatment planning system. Ma CM; Mok E; Kapur A; Pawlicki T; Findley D; Brain S; Forster K; Boyer AL Med Phys; 1999 Oct; 26(10):2133-43. PubMed ID: 10535630 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of the first commercial Monte Carlo dose calculation engine for electron beam treatment planning. Cygler JE; Daskalov GM; Chan GH; Ding GX Med Phys; 2004 Jan; 31(1):142-53. PubMed ID: 14761030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]