These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 9979507)

  • 1. Magnetic oscillations and quasiparticle band structure in the mixed state of type-II superconductors.
    Norman MR; MacDonald AH; Akera H
    Phys Rev B Condens Matter; 1995 Mar; 51(9):5927-5942. PubMed ID: 9979507
    [No Abstract]   [Full Text] [Related]  

  • 2. Strain-Driven Approach to Quantum Criticality in AFe_{2}As_{2} with A=K, Rb, and Cs.
    Eilers F; Grube K; Zocco DA; Wolf T; Merz M; Schweiss P; Heid R; Eder R; Yu R; Zhu JX; Si Q; Shibauchi T; Löhneysen HV
    Phys Rev Lett; 2016 Jun; 116(23):237003. PubMed ID: 27341252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unusual electronic structure and observation of dispersion kink in CeFeAsO parent compound of FeAs-based superconductors.
    Liu H; Chen GF; Zhang W; Zhao L; Liu G; Xia TL; Jia X; Mu D; Liu S; He S; Peng Y; He J; Chen Z; Dong X; Zhang J; Wang G; Zhu Y; Xu Z; Chen C; Zhou XJ
    Phys Rev Lett; 2010 Jul; 105(2):027001. PubMed ID: 20867728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic and quasiparticle excitation spectra of an itinerant J1-J2 model for iron-pnictide superconductors.
    da Conceição CM; Silva Neto MB; Marino EC
    Phys Rev Lett; 2011 Mar; 106(11):117002. PubMed ID: 21469890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quasiparticle interference in the spin-density wave phase of iron-based superconductors.
    Knolle J; Eremin I; Akbari A; Moessner R
    Phys Rev Lett; 2010 Jun; 104(25):257001. PubMed ID: 20867410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasiparticle Scattering off Defects and Possible Bound States in Charge-Ordered YBa_{2}Cu_{3}O_{y}.
    Zhou R; Hirata M; Wu T; Vinograd I; Mayaffre H; Krämer S; Horvatić M; Berthier C; Reyes AP; Kuhns PL; Liang R; Hardy WN; Bonn DA; Julien MH
    Phys Rev Lett; 2017 Jan; 118(1):017001. PubMed ID: 28106424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Giant oscillations of energy levels in mesoscopic superconductors.
    Kopnin NB; Mel'nikov AS; Pozdnyakova VI; Ryzhov DA; Shereshevskii IA; Vinokur VM
    Phys Rev Lett; 2005 Nov; 95(19):197002. PubMed ID: 16384013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quasiparticle conductance-voltage characteristics for break junctions involving d-wave superconductors: charge-density-wave effects.
    Ekino T; Gabovich AM; Suan Li M; Szymczak H; Voitenko AI
    J Phys Condens Matter; 2017 Dec; 29(50):505602. PubMed ID: 29105650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collective excitations and response functions of two-band band-singlet and spin-triplet superconductors.
    Lee HC
    J Phys Condens Matter; 2011 Feb; 23(5):055701. PubMed ID: 21406913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixed-state quasiparticle spectrum for d-wave superconductors.
    Wang Y; MacDonald AH
    Phys Rev B Condens Matter; 1995 Aug; 52(6):R3876-R3879. PubMed ID: 9981616
    [No Abstract]   [Full Text] [Related]  

  • 11. Quasiparticle breakdown in a quantum spin liquid.
    Stone MB; Zaliznyak IA; Hong T; Broholm CL; Reich DH
    Nature; 2006 Mar; 440(7081):187-90. PubMed ID: 16525467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superconductivity. Quasiparticle mass enhancement approaching optimal doping in a high-T(c) superconductor.
    Ramshaw BJ; Sebastian SE; McDonald RD; Day J; Tan BS; Zhu Z; Betts JB; Liang R; Bonn DA; Hardy WN; Harrison N
    Science; 2015 Apr; 348(6232):317-20. PubMed ID: 25814065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quasiparticle conductivities in disordered d-wave superconductors.
    Fabrizio M; Dell'Anna L; Castellani C
    Phys Rev Lett; 2002 Feb; 88(7):076603. PubMed ID: 11863927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real and Hypothetical Intermediate-Valence Ag
    Grochala W; Hoffmann R
    Angew Chem Int Ed Engl; 2001 Aug; 40(15):2742-2781. PubMed ID: 29711991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angle-resolved heat capacity of heavy fermion superconductors.
    Sakakibara T; Kittaka S; Machida K
    Rep Prog Phys; 2016 Sep; 79(9):094002. PubMed ID: 27482621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the Fermi-surface anisotropy in angle-dependent magnetic-field oscillations for identifying the energy-gap anisotropy of A(y)Fe(2)Se(2) superconductors.
    Das T; Vorontsov AB; Vekhter I; Graf MJ
    Phys Rev Lett; 2012 Nov; 109(18):187006. PubMed ID: 23215321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theory of nodal s ± -wave pairing symmetry in the Pu-based 115 superconductor family.
    Das T; Zhu JX; Graf MJ
    Sci Rep; 2015 Feb; 5():8632. PubMed ID: 25721375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic dispersion anomalies in iron pnictide superconductors.
    Heimes A; Grein R; Eschrig M
    Phys Rev Lett; 2011 Jan; 106(4):047003. PubMed ID: 21405349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum oscillations probe the normal electronic states of novel superconductors.
    Coldea AI
    Philos Trans A Math Phys Eng Sci; 2010 Aug; 368(1924):3503-17. PubMed ID: 20603364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic Raman scattering of two-band superconductors: a time-dependent Landau-Ginzburg theory approach.
    Lee HC; Choi HY
    J Phys Condens Matter; 2009 Nov; 21(44):445701. PubMed ID: 21832467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.