These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 9979813)
1. Theory of the anisotropy of ultrafast nonlinear refraction in zinc-blende semiconductors. Hutchings DC; Wherrett BS Phys Rev B Condens Matter; 1995 Sep; 52(11):8150-8159. PubMed ID: 9979813 [No Abstract] [Full Text] [Related]
2. Theory of the dispersion of ultrafast nonlinear refraction in zinc-blende semiconductors below the band edge. Hutchings DC; Wherrett BS Phys Rev B Condens Matter; 1994 Aug; 50(7):4622-4630. PubMed ID: 9976767 [No Abstract] [Full Text] [Related]
3. Optical anisotropy of zinc-blende semiconductors in an electric field. Foreman BA Phys Rev Lett; 2000 Mar; 84(11):2505-8. PubMed ID: 11018921 [TBL] [Abstract][Full Text] [Related]
4. Nonlinear-optical activity owing to anisotropy of ultrafast nonlinear refraction in cubic materials. Hutchings DC Opt Lett; 1995 Aug; 20(15):1607-9. PubMed ID: 19862098 [TBL] [Abstract][Full Text] [Related]
5. Theory of anisotropy of two-photon absorption in zinc-blende semiconductors. Hutchings DC; Wherrett BS Phys Rev B Condens Matter; 1994 Jan; 49(4):2418-2426. PubMed ID: 10011075 [No Abstract] [Full Text] [Related]
6. Origin of bulk uniaxial anisotropy in zinc-blende dilute magnetic semiconductors. Birowska M; Śliwa C; Majewski JA; Dietl T Phys Rev Lett; 2012 Jun; 108(23):237203. PubMed ID: 23003985 [TBL] [Abstract][Full Text] [Related]
7. The case for using gap plasmon-polaritons in second-order optical nonlinear processes. Khurgin JB; Sun G Opt Express; 2012 Dec; 20(27):28717-23. PubMed ID: 23263109 [TBL] [Abstract][Full Text] [Related]
8. Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors. Wang K; Feng Y; Chang C; Zhan J; Wang C; Zhao Q; Coleman JN; Zhang L; Blau WJ; Wang J Nanoscale; 2014 Sep; 6(18):10530-5. PubMed ID: 25097043 [TBL] [Abstract][Full Text] [Related]
9. Anisotropy and interference effects in magnetooptical transitions in p-type zinc-blende semiconductors. La Rocca GC ; Rodriguez S; Bassani F Phys Rev B Condens Matter; 1988 Nov; 38(14):9819-9829. PubMed ID: 9945803 [No Abstract] [Full Text] [Related]
10. Three-photon absorption spectra of zinc blende semiconductors: theory and experiment: erratum. Cirloganu CM; Olszak PD; Padilha LA; Webster S; Hagan DJ; Van Stryland EW Opt Lett; 2020 Feb; 45(4):1025-1026. PubMed ID: 32058534 [TBL] [Abstract][Full Text] [Related]
11. Why does wurtzite form in nanowires of III-V zinc blende semiconductors? Glas F; Harmand JC; Patriarche G Phys Rev Lett; 2007 Oct; 99(14):146101. PubMed ID: 17930689 [TBL] [Abstract][Full Text] [Related]
12. Spin-polarized structural, electronic, and magnetic properties of diluted magnetic semiconductors Cd(1-x)Mn(x)S and Cd(1-x)Mn(x)Se in zinc blende phase. Nazir S; Ikram N; Tanveer M; Shaukat A; Saeed Y; Reshak AH J Phys Chem A; 2009 May; 113(20):6022-7. PubMed ID: 19438272 [TBL] [Abstract][Full Text] [Related]
13. Shallow donors in magnetic fields in zinc-blende semiconductors. I. Theory. Trzeciakowski W; Baj M; Huant S; Brunel LC Phys Rev B Condens Matter; 1986 May; 33(10):6846-6862. PubMed ID: 9938010 [No Abstract] [Full Text] [Related]
14. Observation of spontaneous spin-splitting in the band structure of an n-type zinc-blende ferromagnetic semiconductor. Anh LD; Hai PN; Tanaka M Nat Commun; 2016 Dec; 7():13810. PubMed ID: 27991502 [TBL] [Abstract][Full Text] [Related]
15. Comparison of stress and total energy methods for calculation of elastic properties of semiconductors. Caro MA; Schulz S; O'Reilly EP J Phys Condens Matter; 2013 Jan; 25(2):025803. PubMed ID: 23211738 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods. Kan S; Mokari T; Rothenberg E; Banin U Nat Mater; 2003 Mar; 2(3):155-8. PubMed ID: 12612671 [TBL] [Abstract][Full Text] [Related]