These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The mechanisms of microbial oxidations of petroleum hydrocarbons. van der Linden AC; Thijsse GJ Adv Enzymol Relat Areas Mol Biol; 1965; 27():469-546. PubMed ID: 4883740 [No Abstract] [Full Text] [Related]
4. Catabolism of aromatic compounds by micro-organisms. Dagley S Adv Microb Physiol; 1971; 6(0):1-46. PubMed ID: 4950664 [No Abstract] [Full Text] [Related]
5. Combined action of a bacterial monooxygenase and a fungal laccase for the biodegradation of mono- and poly-aromatic hydrocarbons. Gullotto A; Branciamore S; Duchi I; Caño MF; Randazzo D; Tilli S; Giardina P; Sannia G; Scozzafava A; Briganti F Bioresour Technol; 2008 Nov; 99(17):8353-9. PubMed ID: 18407494 [TBL] [Abstract][Full Text] [Related]
6. Biotransformation of various substituted aromatic compounds to chiral dihydrodihydroxy derivatives. Raschke H; Meier M; Burken JG; Hany R; Müller MD; Van Der Meer JR; Kohler HP Appl Environ Microbiol; 2001 Aug; 67(8):3333-9. PubMed ID: 11472901 [TBL] [Abstract][Full Text] [Related]
7. [Biochemical and genetic studies on decomposition aromatic compounds by Pseudomonas]. Nakazawa A Nihon Saikingaku Zasshi; 1976 Mar; 31(2):285-99. PubMed ID: 787576 [No Abstract] [Full Text] [Related]
8. Metabolic diversity of aromatic hydrocarbon-degrading bacteria from a petroleum-contaminated aquifer. Mikesell MD; Kukor JJ; Olsen RH Biodegradation; 1993-1994; 4(4):249-59. PubMed ID: 7764922 [TBL] [Abstract][Full Text] [Related]
9. Oxidation of substituted phenols by Pseudomonas putida F1 and Pseudomonas sp. strain JS6. Spain JC; Gibson DT Appl Environ Microbiol; 1988 Jun; 54(6):1399-404. PubMed ID: 3415220 [TBL] [Abstract][Full Text] [Related]
10. Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene. Gibson DT; Koch JR; Kallio RE Biochemistry; 1968 Jul; 7(7):2653-62. PubMed ID: 4298226 [No Abstract] [Full Text] [Related]
11. Intrinsic bioremediability of an aromatic hydrocarbon-polluted groundwater: diversity of bacterial population and toluene monoxygenase genes. Cavalca L; Dell'Amico E; Andreoni V Appl Microbiol Biotechnol; 2004 May; 64(4):576-87. PubMed ID: 14624316 [TBL] [Abstract][Full Text] [Related]
13. Arene oxides and the NIH shift: the metabolism, toxicity and carcinogenicity of aromatic compounds. Daly JW; Jerina DM; Witkop B Experientia; 1972 Oct; 28(10):1129-49. PubMed ID: 4117670 [No Abstract] [Full Text] [Related]
14. Enumeration of aromatic oxygenase genes to evaluate biodegradation during multi-phase extraction at a gasoline-contaminated site. Baldwin BR; Nakatsu CH; Nebe J; Wickham GS; Parks C; Nies L J Hazard Mater; 2009 Apr; 163(2-3):524-30. PubMed ID: 18706759 [TBL] [Abstract][Full Text] [Related]
15. [Microbial degradation of aromatic compounds]. Lingens F Schriftenr Ver Wasser Boden Lufthyg; 1989; 80():39-60. PubMed ID: 2658038 [TBL] [Abstract][Full Text] [Related]
16. MEASUREMENT OF POLYCYCLIC AROMATIC HYDROCARBONS IN THE AIR OF SYDNEY USING VERY LONG ALUMINA COLUMNS FOR SEPARATION. CLEARY GJ Air Water Pollut; 1963 Oct; 7():753-67. PubMed ID: 14070259 [No Abstract] [Full Text] [Related]
17. Broad substrate specificity of naphthalene- and biphenyl-utilizing bacteria. Baldwin BR; Mesarch MB; Nies L Appl Microbiol Biotechnol; 2000 Jun; 53(6):748-53. PubMed ID: 10919338 [TBL] [Abstract][Full Text] [Related]
18. BTEX biodegradation by bacteria from effluents of petroleum refinery. Mazzeo DE; Levy CE; de Angelis Dde F; Marin-Morales MA Sci Total Environ; 2010 Sep; 408(20):4334-40. PubMed ID: 20655572 [TBL] [Abstract][Full Text] [Related]