These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 998045)

  • 1. [Primary oxidation mechanisms in degradation of aliphatic hydrocarbons by bacterial enzyme systems (author's transl)].
    Hammer KD; Liemann F
    Zentralbl Bakteriol Orig B; 1976 Jul; 162(1-2):169-79. PubMed ID: 998045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regioselective oxygenation of fatty acids, fatty alcohols and other aliphatic compounds by a basidiomycete heme-thiolate peroxidase.
    Gutiérrez A; Babot ED; Ullrich R; Hofrichter M; Martínez AT; del Río JC
    Arch Biochem Biophys; 2011 Oct; 514(1-2):33-43. PubMed ID: 21864499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-Alkane oxidation enzymes of a pseudomonad.
    Parekh VR; Traxler RW; Sobek JM
    Appl Environ Microbiol; 1977 Apr; 33(4):881-4. PubMed ID: 869535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygenase-catalyzed biological hydroxylations.
    Gunsalus IC; Pederson TC; Sligar SG
    Annu Rev Biochem; 1975; 44():377-407. PubMed ID: 806252
    [No Abstract]   [Full Text] [Related]  

  • 5. Physiological function of the Pseudomonas putida PpG6 (Pseudomonas oleovorans) alkane hydroxylase: monoterminal oxidation of alkanes and fatty acids.
    Nieder M; Shapiro J
    J Bacteriol; 1975 Apr; 122(1):93-8. PubMed ID: 804473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxyfunctionalization of aliphatic compounds by a recombinant peroxygenase from Coprinopsis cinerea.
    Babot ED; del Río JC; Kalum L; Martínez AT; Gutiérrez A
    Biotechnol Bioeng; 2013 Sep; 110(9):2323-32. PubMed ID: 23519689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of alkane oxidation in Pseudomonas putida.
    Grund A; Shapiro J; Fennewald M; Bacha P; Leahy J; Markbreiter K; Nieder M; Toepfer M
    J Bacteriol; 1975 Aug; 123(2):546-56. PubMed ID: 1150626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudomonas aeruginosa mutants defective in heptane oxidation.
    Macham LP; Heydeman MT
    J Gen Microbiol; 1974 Nov; 85(1):77-84. PubMed ID: 4215867
    [No Abstract]   [Full Text] [Related]  

  • 9. Alkane oxidation in Candida tropicalis.
    Gallo M; Bertrand JC; Roche B; Azoulay E
    Biochim Biophys Acta; 1973 Mar; 296(3):624-38. PubMed ID: 4143948
    [No Abstract]   [Full Text] [Related]  

  • 10. [Regulation and properties of a particular acceptor-dependent alcohol dehydrogenase of Pseudomonas putida during growth on n-alkanes].
    Tauchert H; Grunow M; Aurich H
    Z Allg Mikrobiol; 1978; 18(9):675-80. PubMed ID: 216166
    [No Abstract]   [Full Text] [Related]  

  • 11. [On the oxidation of cholesterol side chain (author's transl)].
    Okuda K
    Tanpakushitsu Kakusan Koso; 1976 Jan; 21(1):54-67. PubMed ID: 766086
    [No Abstract]   [Full Text] [Related]  

  • 12. Characterization of the n-alkane and fatty acid hydroxylating cytochrome P450 forms 52A3 and 52A4.
    Scheller U; Zimmer T; Kärgel E; Schunck WH
    Arch Biochem Biophys; 1996 Apr; 328(2):245-54. PubMed ID: 8645001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Butane monooxygenase of 'Pseudomonas butanovora': purification and biochemical characterization of a terminal-alkane hydroxylating diiron monooxygenase.
    Dubbels BL; Sayavedra-Soto LA; Arp DJ
    Microbiology (Reading); 2007 Jun; 153(Pt 6):1808-1816. PubMed ID: 17526838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase.
    Glieder A; Farinas ET; Arnold FH
    Nat Biotechnol; 2002 Nov; 20(11):1135-9. PubMed ID: 12368811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxenoid models for enzymic hydroxylations.
    Hamilton GA; Giacin JR; Hellman TM; Snook ME; Weller JW
    Ann N Y Acad Sci; 1973; 212():4-12. PubMed ID: 4532480
    [No Abstract]   [Full Text] [Related]  

  • 16. Whole-cell bio-oxidation of n-dodecane using the alkane hydroxylase system of P. putida GPo1 expressed in E. coli.
    Grant C; Woodley JM; Baganz F
    Enzyme Microb Technol; 2011 May; 48(6-7):480-6. PubMed ID: 22113020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Complex of LaoA and LaoB Acts as a Tat-Dependent Dehydrogenase for Long-Chain Alcohols in Pseudomonas aeruginosa.
    Panasia G; Drees SL; Fetzner S; Philipp B
    Appl Environ Microbiol; 2021 Jul; 87(16):e0076221. PubMed ID: 34085859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Mechanisms of aliphatic alcohols oxidation by enzymatic systems of the liver].
    Metelitsa DI; Popova EM
    Biokhimiia; 1979 Nov; 44(11):1923-35. PubMed ID: 397836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The alkane-hydroxylating enzyme system of the yeast Candida guilliermondii.
    Müller HG; Schunck WH; Riege P; Honeck H
    Acta Biol Med Ger; 1979; 38(2-3):345-9. PubMed ID: 117657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Hydrocarbon metabolism in a marine bacterium].
    Bertrand JC; Doux HJ; Azoulay E
    Biochimie; 1976; 58(7):843-54. PubMed ID: 184846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.