These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 9980570)

  • 1. Spectral weight transfer and mass renormalization in Mott-Hubbard systems SrVO3 and CaVO3: Influence of long-range Coulomb interaction.
    Morikawa K; Mizokawa T; Kobayashi K; Fujimori A; Eisaki H; Uchida S; Iga F; Nishihara Y
    Phys Rev B Condens Matter; 1995 Nov; 52(19):13711-13714. PubMed ID: 9980570
    [No Abstract]   [Full Text] [Related]  

  • 2. Bulk- and surface-sensitive high-resolution photoemission study of two mott-hubbard systems: SrVO3 and CaVO3.
    Eguchi R; Kiss T; Tsuda S; Shimojima T; Mizokami T; Yokoya T; Chainani A; Shin S; Inoue IH; Togashi T; Watanabe S; Zhang CQ; Chen CT; Arita M; Shimada K; Namatame H; Taniguchi M
    Phys Rev Lett; 2006 Feb; 96(7):076402. PubMed ID: 16606115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct observation of the mass renormalization in SrVO3 by angle resolved photoemission spectroscopy.
    Yoshida T; Tanaka K; Yagi H; Ino A; Eisaki H; Fujimori A; Shen ZX
    Phys Rev Lett; 2005 Sep; 95(14):146404. PubMed ID: 16241677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral properties near the Mott transition in the one-dimensional Hubbard model.
    Kohno M
    Phys Rev Lett; 2010 Sep; 105(10):106402. PubMed ID: 20867533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface versus bulk Coulomb correlations in photoemission spectra of SrVO3 and CaVO3.
    Liebsch A
    Phys Rev Lett; 2003 Mar; 90(9):096401. PubMed ID: 12689243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exciton doublet in the Mott-Hubbard insulator LiCuVO4 identified by spectral ellipsometry.
    Matiks Y; Horsch P; Kremer RK; Keimer B; Boris AV
    Phys Rev Lett; 2009 Oct; 103(18):187401. PubMed ID: 19905830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quasiperiodic hubbard chains.
    Hida K
    Phys Rev Lett; 2001 Feb; 86(7):1331-4. PubMed ID: 11178076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoemission of a doped Mott insulator: spectral weight transfer and a qualitative Mott-Hubbard description.
    Sing M; Glawion S; Schlachter M; Scholz MR; Goss K; Heidler J; Berner G; Claessen R
    Phys Rev Lett; 2011 Feb; 106(5):056403. PubMed ID: 21405415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mott transition in kagomé lattice Hubbard model.
    Ohashi T; Kawakami N; Tsunetsugu H
    Phys Rev Lett; 2006 Aug; 97(6):066401. PubMed ID: 17026182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional Mott-Hubbard electrons in an artificial honeycomb lattice.
    Singha A; Gibertini M; Karmakar B; Yuan S; Polini M; Vignale G; Katsnelson MI; Pinczuk A; Pfeiffer LN; West KW; Pellegrini V
    Science; 2011 Jun; 332(6034):1176-9. PubMed ID: 21636768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic structure of the band-filling-controlled CaVO3 and LaVO3 compounds.
    Mossanek RJ; Abbate M; Yoshida T; Fujimori A; Yoshida Y; Shirakawa N; Eisaki H; Kohno S; Fonseca PT; Vicentin FC
    J Phys Condens Matter; 2010 Mar; 22(9):095601. PubMed ID: 21389420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spin-controlled Mott-Hubbard bands in LaMnO3 probed by optical ellipsometry.
    Kovaleva NN; Boris AV; Bernhard C; Kulakov A; Pimenov A; Balbashov AM; Khaliullin G; Keimer B
    Phys Rev Lett; 2004 Oct; 93(14):147204. PubMed ID: 15524838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of oxygen vacancies on electronic states of CaVO3- delta and SrVO3- delta : A photoemission study.
    Aiura Y; Iga F; Nishihara Y; Ohnuki H; Kato H
    Phys Rev B Condens Matter; 1993 Mar; 47(11):6732-6735. PubMed ID: 10004646
    [No Abstract]   [Full Text] [Related]  

  • 14. Doublon-Holon Origin of the Subpeaks at the Hubbard Band Edges.
    Lee SB; von Delft J; Weichselbaum A
    Phys Rev Lett; 2017 Dec; 119(23):236402. PubMed ID: 29286682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fermi surface of 3d1 perovskite CaVO3 near the Mott transition.
    Inoue IH; Bergemann C; Hase I; Julian SR
    Phys Rev Lett; 2002 Jun; 88(23):236403. PubMed ID: 12059384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orbital-selective mott transitions in the degenerate Hubbard model.
    Koga A; Kawakami N; Rice TM; Sigrist M
    Phys Rev Lett; 2004 May; 92(21):216402. PubMed ID: 15245300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Doping dependence of the Neel temperature in mott-hubbard antiferromagnets: effect of vortices.
    Timm C; Bennemann KH
    Phys Rev Lett; 2000 May; 84(21):4994-7. PubMed ID: 10990850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superfluid to Mott-insulator transition in Bose-Hubbard models.
    Capello M; Becca F; Fabrizio M; Sorella S
    Phys Rev Lett; 2007 Aug; 99(5):056402. PubMed ID: 17930773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ab initio studies on the interplay between spin-orbit interaction and Coulomb correlation in Sr2IrO4 and Ba2IrO4.
    Arita R; Kuneš J; Kozhevnikov AV; Eguiluz AG; Imada M
    Phys Rev Lett; 2012 Feb; 108(8):086403. PubMed ID: 22463548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum condensation in electron-hole systems: excitonic BEC-BCS crossover and biexciton crystallization.
    Ogawa T; Tomio Y; Asano K
    J Phys Condens Matter; 2007 Jul; 19(29):295205. PubMed ID: 21483057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.