These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 9980570)

  • 21. Optical probe of carrier doping by X-ray irradiation in the organic dimer Mott insulator kappa-(BEDT-TTF)_{2}Cu[N(CN)_{2}]Cl.
    Sasaki T; Yoneyama N; Nakamura Y; Kobayashi N; Ikemoto Y; Moriwaki T; Kimura H
    Phys Rev Lett; 2008 Nov; 101(20):206403. PubMed ID: 19113361
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Triangular Mott-Hubbard insulator phases of Sn/Si(111) and Sn/Ge(111) surfaces.
    Profeta G; Tosatti E
    Phys Rev Lett; 2007 Feb; 98(8):086401. PubMed ID: 17359115
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bandwidth renormalization due to the intersite Coulomb interaction.
    In 't Veld Y; Schüler M; Wehling TO; Katsnelson MI; van Loon EGCP
    J Phys Condens Matter; 2019 Nov; 31(46):465603. PubMed ID: 31362270
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coulomb Liquid Phases of Bosonic Cluster Mott Insulators on a Pyrochlore Lattice.
    Lv JP; Chen G; Deng Y; Meng ZY
    Phys Rev Lett; 2015 Jul; 115(3):037202. PubMed ID: 26230823
    [TBL] [Abstract][Full Text] [Related]  

  • 25. U parameter of the mott-hubbard insulator 6H-SiC(0001)-(sqrt.
    Rohlfing M; Pollmann J
    Phys Rev Lett; 2000 Jan; 84(1):135-8. PubMed ID: 11015853
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Observation of an anisotropic Dirac cone reshaping and ferrimagnetic spin polarization in an organic conductor.
    Hirata M; Ishikawa K; Miyagawa K; Tamura M; Berthier C; Basko D; Kobayashi A; Matsuno G; Kanoda K
    Nat Commun; 2016 Aug; 7():12666. PubMed ID: 27578363
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hubbard physics in the PAW GW approximation.
    Booth JM; Drumm DW; Casey PS; Smith JS; Russo SP
    J Chem Phys; 2016 Jun; 144(24):244110. PubMed ID: 27369500
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mott transition in the two-dimensional Hubbard model.
    Kohno M
    Phys Rev Lett; 2012 Feb; 108(7):076401. PubMed ID: 22401230
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mott transitions in the periodic Anderson model.
    Logan DE; Galpin MR; Mannouch J
    J Phys Condens Matter; 2016 Nov; 28(45):455601. PubMed ID: 27618214
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantum phase transition in the two-band hubbard model.
    Costi TA; Liebsch A
    Phys Rev Lett; 2007 Dec; 99(23):236404. PubMed ID: 18233389
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantum phase transitions to charge-ordered and Wigner-crystal states under the interplay of lattice commensurability and long-range Coulomb interactions.
    Noda Y; Imada M
    Phys Rev Lett; 2002 Oct; 89(17):176803. PubMed ID: 12398695
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electron-lattice interactions strongly renormalize the charge-transfer energy in the spin-chain cuprate Li2CuO2.
    Johnston S; Monney C; Bisogni V; Zhou KJ; Kraus R; Behr G; Strocov VN; Málek J; Drechsler SL; Geck J; Schmitt T; van den Brink J
    Nat Commun; 2016 Feb; 7():10563. PubMed ID: 26884151
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantum spin liquids unveil the genuine Mott state.
    Pustogow A; Bories M; Löhle A; Rösslhuber R; Zhukova E; Gorshunov B; Tomić S; Schlueter JA; Hübner R; Hiramatsu T; Yoshida Y; Saito G; Kato R; Lee TH; Dobrosavljević V; Fratini S; Dressel M
    Nat Mater; 2018 Sep; 17(9):773-777. PubMed ID: 30082905
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Divergent precursors of the Mott-Hubbard transition at the two-particle level.
    Schäfer T; Rohringer G; Gunnarsson O; Ciuchi S; Sangiovanni G; Toschi A
    Phys Rev Lett; 2013 Jun; 110(24):246405. PubMed ID: 25165946
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strong coupling expansion for the Bose-Hubbard and Jaynes-Cummings lattice models.
    Heil C; von der Linden W
    J Phys Condens Matter; 2012 Jul; 24(29):295601. PubMed ID: 22738846
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Filling of the mott-hubbard gap in the high temperature photoemission spectrum of (V0.972Cr0.028)2O3.
    Mo SK; Kim HD; Allen JW; Gweon GH; Denlinger JD; Park JH; Sekiyama A; Yamasaki A; Suga S; Metcalf P; Held K
    Phys Rev Lett; 2004 Aug; 93(7):076404. PubMed ID: 15324257
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamical breakup of the fermi surface in a doped Mott insulator.
    Civelli M; Capone M; Kancharla SS; Parcollet O; Kotliar G
    Phys Rev Lett; 2005 Sep; 95(10):106402. PubMed ID: 16196948
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Collective Coulomb blockade in an array of quantum dots: A Mott-Hubbard approach.
    Stafford CA; Das Sarma S
    Phys Rev Lett; 1994 May; 72(22):3590-3593. PubMed ID: 10056238
    [No Abstract]   [Full Text] [Related]  

  • 39. Mott physics near the insulator-to-metal transition in NdNiO3.
    Stewart MK; Liu J; Kareev M; Chakhalian J; Basov DN
    Phys Rev Lett; 2011 Oct; 107(17):176401. PubMed ID: 22107544
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of long range coulomb interactions on the mott transition.
    Chitra R; Kotliar G
    Phys Rev Lett; 2000 Apr; 84(16):3678-81. PubMed ID: 11019175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.