These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 9980810)
1. Coupling of geometric confinement and magnetic confinement in In0.09Ga0.91As/GaAs quantum wells in magnetic fields with varying orientations. Bayer M; Dremin AA; Kulakovskii VD; Forchel A; Faller F; Knipp PA; Reinecke TL Phys Rev B Condens Matter; 1995 Nov; 52(20):14728-14738. PubMed ID: 9980810 [No Abstract] [Full Text] [Related]
2. Photoluminescence excitation study of lateral-subband structure in barrier-modulated In0.09Ga0.91As quantum wires. Gréus C; Spiegel R; Knipp PA; Reinecke TL; Faller F; Forchel A Phys Rev B Condens Matter; 1994 Feb; 49(8):5753-5756. PubMed ID: 10011545 [No Abstract] [Full Text] [Related]
3. Study on Strain Compensation for Multiple-Quantum Well in Infrared Light-Emitting Diode Using the In Kim DK; Lee HJ J Nanosci Nanotechnol; 2018 Mar; 18(3):2014-2017. PubMed ID: 29448702 [TBL] [Abstract][Full Text] [Related]
4. Photoinduced electron coupling in delta -doped GaAs/In0.18Ga0.82As quantum wells. Lo I; Kao MJ; Hsu WC; Kuo KK; Chang YC; Weng HM; Chiang JC; Tsay SF Phys Rev B Condens Matter; 1996 Aug; 54(7):4774-4779. PubMed ID: 9986439 [No Abstract] [Full Text] [Related]
5. Size dependence of the changeover from geometric to magnetic confinement in In0.53Ga0.47As/InP quantum wires. Bayer M; Ils P; Michel M; Forchel A; Reinecke TL; Knipp PA Phys Rev B Condens Matter; 1996 Feb; 53(8):4668-4671. PubMed ID: 9984025 [No Abstract] [Full Text] [Related]
6. Quantum confinement and magnetic-field effects on the electron g factor in GaAs-(Ga, Al)As cylindrical quantum dots. Mejía-Salazar JR; Porras-Montenegro N; Oliveira LE J Phys Condens Matter; 2009 Nov; 21(45):455302. PubMed ID: 21694007 [TBL] [Abstract][Full Text] [Related]
7. Fabrication and optical properties of GaAs/InGaAs/GaAs nanowire core-multishell quantum well heterostructures. Yan X; Zhang X; Li J; Wu Y; Cui J; Ren X Nanoscale; 2015 Jan; 7(3):1110-5. PubMed ID: 25482135 [TBL] [Abstract][Full Text] [Related]
8. Colloidal GaAs quantum wires: solution-liquid-solid synthesis and quantum-confinement studies. Dong A; Yu H; Wang F; Buhro WE J Am Chem Soc; 2008 May; 130(18):5954-61. PubMed ID: 18393420 [TBL] [Abstract][Full Text] [Related]
9. Effects of confinement on the electron-phonon interaction in Al(0.18)Ga(0.82)As/GaAs quantum wells. Morais RR; Dias IF; da Silva MA; Cesar DF; Duarte JL; Lourenço SA; Laureto E; da Silva EC; Quivy AA J Phys Condens Matter; 2009 Apr; 21(15):155601. PubMed ID: 21825369 [TBL] [Abstract][Full Text] [Related]
10. Coupling-barrier and non-parabolicity effects on the conduction electron cyclotron effective mass and Landé [Formula: see text] factor in GaAs double quantum wells. Darío Perea J; Mejía-Salazar JR; Porras-Montenegro N J Phys Condens Matter; 2011 Feb; 23(6):065303. PubMed ID: 21406924 [TBL] [Abstract][Full Text] [Related]
11. Spectroscopy of Quantum Dot Orbitals with In-Plane Magnetic Fields. Camenzind LC; Yu L; Stano P; Zimmerman JD; Gossard AC; Loss D; Zumbühl DM Phys Rev Lett; 2019 May; 122(20):207701. PubMed ID: 31172765 [TBL] [Abstract][Full Text] [Related]
12. Recombination dynamics in pseudomorphic and partially relaxed In0.23Ga0.77As/GaAs quantum wells. Grundmann M; Bimberg D; Fischer-Colbrie A; Miller JN Phys Rev B Condens Matter; 1990 May; 41(14):10120-10123. PubMed ID: 9993395 [No Abstract] [Full Text] [Related]
13. Binding energy of excitons to neutral donors in In0.1Ga0.9As/GaAs quantum wells. Reynolds DC; Evans KR; Stutz CE; Yu PW Phys Rev B Condens Matter; 1991 Jul; 44(4):1839-1843. PubMed ID: 9999722 [No Abstract] [Full Text] [Related]
14. Photoluminescence excitation spectroscopy of as-grown and chemically released In0.05Ga0.95As/GaAs quantum wells. Joyce MJ; Xu ZY; Gal M Phys Rev B Condens Matter; 1991 Aug; 44(7):3144-3149. PubMed ID: 9999908 [No Abstract] [Full Text] [Related]
15. Intraband and interband magneto-optics of p-type In0.18Ga0.82As/GaAs quantum wells. Warburton RJ; Nicholas RJ; Howard LK; Emeny MT Phys Rev B Condens Matter; 1991 Jun; 43(17):14124-14133. PubMed ID: 9997282 [No Abstract] [Full Text] [Related]
16. High-pressure study of optical transitions in strained In0.2Ga0.8As/GaAs multiple quantum wells. Li GH; Goñi AR; Syassen K; Hou HQ; Feng W; Zhou JM Phys Rev B Condens Matter; 1996 Nov; 54(19):13820-13826. PubMed ID: 9985299 [No Abstract] [Full Text] [Related]
17. Spin-polarized excitons in pseudomorphic, strained In0.16Ga0.84As/Al0.29Ga0.71As quantum wells on a GaAs substrate. Kunzer M; Hendorfer G; Kaufmann U; Köhler K Phys Rev B Condens Matter; 1992 May; 45(19):11151-11155. PubMed ID: 10001036 [No Abstract] [Full Text] [Related]
18. Effects of hydrostatic pressure on the electron [Formula: see text] factor and g-factor anisotropy in GaAs-(Ga, Al)As quantum wells under magnetic fields. Porras-Montenegro N; Duque CA; Reyes-Gómez E; Oliveira LE J Phys Condens Matter; 2008 Nov; 20(46):465220. PubMed ID: 21693858 [TBL] [Abstract][Full Text] [Related]
19. Direct measurement of the effective-mass renormalization in n-type modulation-doped Al0.23Ga0.77As/In0.08Ga0.92As/GaAs quantum wells. Adams S; Galbraith I; Murdin BN; Mitchell KW; Cavenett BC; Pidgeon CR; Kirby PB; Smith RS; Miller B Phys Rev B Condens Matter; 1992 Nov; 46(20):13611-13614. PubMed ID: 10003413 [No Abstract] [Full Text] [Related]
20. Strain Compensation in Single ZnSe/CdSe Quantum Wells: Analytical Model and Experimental Evidence. Rieger T; Riedl T; Neumann E; Grützmacher D; Lindner JK; Pawlis A ACS Appl Mater Interfaces; 2017 Mar; 9(9):8371-8377. PubMed ID: 28234444 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]