These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 9980810)
21. Optical study of the electronic states of In0.53Ga0.47As/In0.52Al0.48As quantum wells in high electric fields. Satzke K; Weiser G; Stolz W; Ploog K Phys Rev B Condens Matter; 1991 Jan; 43(3):2263-2271. PubMed ID: 9997500 [No Abstract] [Full Text] [Related]
22. The influence of doping on the device characteristics of In0.5Ga0.5As/GaAs/Al0.2Ga0.8As quantum dots-in-a-well infrared photodetectors. Jolley G; Fu L; Tan HH; Jagadish C Nanoscale; 2010 Jul; 2(7):1128-33. PubMed ID: 20648338 [TBL] [Abstract][Full Text] [Related]
23. Direct measurement of quantum confinement effects at metal to quantum-well nanocontacts. Tivarus C; Pelz JP; Hudait MK; Ringel SA Phys Rev Lett; 2005 May; 94(20):206803. PubMed ID: 16090268 [TBL] [Abstract][Full Text] [Related]
24. Design and comparison of GaAs, GaAsP and InGaAlAs quantum-well active regions for 808-nm VCSELs. Zhang Y; Ning Y; Zhang L; Zhang J; Zhang J; Wang Z; Zhang J; Zeng Y; Wang L Opt Express; 2011 Jun; 19(13):12569-81. PubMed ID: 21716498 [TBL] [Abstract][Full Text] [Related]
25. Effect of carrier confinement on effective mass of excitons and estimation of ultralow disorder in Al Haldar S; Dixit VK; Vashisht G; Khamari SK; Porwal S; Sharma TK; Oak SM Sci Rep; 2017 Jul; 7(1):4905. PubMed ID: 28687735 [TBL] [Abstract][Full Text] [Related]
26. Step-by-step evolution from Franz-Keldysh oscillations to Stark-Wannier confinement in an In0.12Ga0.88As/GaAs superlattice. Ribeiro E; Cerdeira F; Roth AP Phys Rev B Condens Matter; 1992 Nov; 46(19):12542-12546. PubMed ID: 10003173 [No Abstract] [Full Text] [Related]
27. Far-infrared study of confinement effects on acceptors in GaAs/AlxGa1-xAs quantum wells. Reeder AA; McCombe BD; Chambers FA; Devane GP Phys Rev B Condens Matter; 1988 Aug; 38(6):4318-4321. PubMed ID: 9946816 [No Abstract] [Full Text] [Related]
29. E1 transition in (113)-oriented GaAs/AlAs multiple quantum wells: Confinement effects and optical anisotropy. Prieto JA; Armelles G Phys Rev B Condens Matter; 1996 Mar; 53(11):6912-6914. PubMed ID: 9982120 [No Abstract] [Full Text] [Related]
30. Spectroscopic study of the effect of confinement on shallow acceptor states in GaAs/AlxGa1-xAs quantum wells. Holtz PO; Sundaram M; Doughty K; Merz JL; Gossard AC Phys Rev B Condens Matter; 1989 Dec; 40(18):12338-12345. PubMed ID: 9991866 [No Abstract] [Full Text] [Related]
31. Mechanisms for the generation of coherent longitudinal-optical phonons in GaAs /AlGaAs multiple quantum wells. Yee KJ; Lim YS; Dekorsy T; Kim DS Phys Rev Lett; 2001 Feb; 86(8):1630-3. PubMed ID: 11290210 [TBL] [Abstract][Full Text] [Related]
32. Observation of normal-incidence intersubband absorption in n-type Al0.09Ga0.91Sb quantum wells. Brown ER; Eglash SJ; McIntosh KA Phys Rev B Condens Matter; 1992 Sep; 46(11):7244-7247. PubMed ID: 10002444 [No Abstract] [Full Text] [Related]
34. Flower-Like Internal Emission Distribution of LEDs with Monolithic Integration of InGaN-based Quantum Wells Emitting Narrow Blue, Green, and Red Spectra. Lee K; Choi I; Lee CR; Chung TH; Kim YS; Jeong KU; Chung DC; Kim JS Sci Rep; 2017 Aug; 7(1):7164. PubMed ID: 28769103 [TBL] [Abstract][Full Text] [Related]
35. Optical detection of hot-electron spin injection into GaAs from a magnetic tunnel transistor source. Jiang X; Wang R; van Dijken S; Shelby R; Macfarlane R; Solomon GS; Harris J; Parkin SS Phys Rev Lett; 2003 Jun; 90(25 Pt 1):256603. PubMed ID: 12857153 [TBL] [Abstract][Full Text] [Related]
36. Biexcitons in short-pulse optical experiments in strong magnetic fields in GaAs quantum wells. Bar-Ad S; Bar-Joseph I; Finkelstein G; Levinson Y Phys Rev B Condens Matter; 1994 Dec; 50(24):18375-18381. PubMed ID: 9976274 [No Abstract] [Full Text] [Related]