These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 9981710)

  • 1. Effects of epitaxial strain and ordering direction on the electronic properties of GaSb/InSb and InAs/InSb superlattices.
    Picozzi S; Continenza A; Freeman AJ
    Phys Rev B Condens Matter; 1995 Aug; 52(7):5247-5255. PubMed ID: 9981710
    [No Abstract]   [Full Text] [Related]  

  • 2. Effect of Interfacial Schemes on the Optical and Structural Properties of InAs/GaSb Type-II Superlattices.
    Alshahrani D; Kesaria M; Jiménez JJ; Kwan D; Srivastava V; Delmas M; Morales FM; Liang B; Huffaker D
    ACS Appl Mater Interfaces; 2023 Feb; 15(6):8624-8635. PubMed ID: 36724387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphological instability in InAs/GaSb superlattices due to interfacial bonds.
    Li JH; Stokes DW; Caha O; Ammu SL; Bai J; Bassler KE; Moss SC
    Phys Rev Lett; 2005 Aug; 95(9):096104. PubMed ID: 16197232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-plane optical anisotropy of InAs/GaSb superlattices with alternate interfaces.
    Wu S; Chen Y; Yu J; Gao H; Jiang C; Huang ; Zhang Y; Wei Y; Ma W
    Nanoscale Res Lett; 2013; 8(1):298. PubMed ID: 23799946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of growth direction and strain conditions on the band lineup at GaSb/InSb and InAs/InSb interfaces.
    Picozzi S; Continenza A; Freeman AJ
    Phys Rev B Condens Matter; 1996 Apr; 53(16):10852-10857. PubMed ID: 9982655
    [No Abstract]   [Full Text] [Related]  

  • 6. Many-body perturbation theory study of type-II InAs/GaSb superlattices within the GW approximation.
    Taghipour Z; Shojaee E; Krishna S
    J Phys Condens Matter; 2018 Aug; 30(32):325701. PubMed ID: 29923836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative analysis of interfacial strain in InAs/GaSb superlattices by aberration-corrected HRTEM and HAADF-STEM.
    Mahalingam K; Haugan HJ; Brown GJ; Eyink KG
    Ultramicroscopy; 2013 Apr; 127():70-5. PubMed ID: 23298538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain-Balanced InAs/AlSb Type-II Superlattice Structures Growth on GaSb Substrate by Molecular Beam Epitaxy.
    Marchewka M; Jarosz D; Ruszała M; Juś A; Krzemiński P; Płoch D; Maś K; Wojnarowska-Nowak R
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36903083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Foreign-catalyst-free growth of InAs/InSb axial heterostructure nanowires on Si (111) by molecular-beam epitaxy.
    So H; Pan D; Li L; Zhao J
    Nanotechnology; 2017 Mar; 28(13):135704. PubMed ID: 28256450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of atomic vacancies in InAs/GaSb strained-layer superlattices by atomic strain.
    Kim H; Meng Y; Kwon JH; Rouviére JL; Zuo JM
    IUCrJ; 2018 Jan; 5(Pt 1):67-72. PubMed ID: 29354272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Terahertz pulse generation from (111)-cut InSb and InAs crystals when illuminated by 1.55-μm femtosecond laser pulses.
    Nevinskas I; Vizbaras K; Trinkūnas A; Butkutė R; Krotkus A
    Opt Lett; 2017 Jul; 42(13):2615-2618. PubMed ID: 28957298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. InSb heterostructure nanowires: MOVPE growth under extreme lattice mismatch.
    Caroff P; Messing ME; Mattias Borg B; Dick KA; Deppert K; Wernersson LE
    Nanotechnology; 2009 Dec; 20(49):495606. PubMed ID: 19904026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peak separation method for sub-lattice strain analysis at atomic resolution: Application to InAs/GaSb superlattice.
    Kim H; Meng Y; Rouviére JL; Zuo JM
    Micron; 2017 Jan; 92():6-12. PubMed ID: 27816744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. InAs/InSb nanowire heterostructures grown by chemical beam epitaxy.
    Ercolani D; Rossi F; Li A; Roddaro S; Grillo V; Salviati G; Beltram F; Sorba L
    Nanotechnology; 2009 Dec; 20(50):505605. PubMed ID: 19907063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoporous Structure Formation in GaSb, InSb, and Ge by Ion Beam Irradiation under Controlled Point Defect Creation Conditions.
    Yanagida Y; Oishi T; Miyaji T; Watanabe C; Nitta N
    Nanomaterials (Basel); 2017 Jul; 7(7):. PubMed ID: 28696351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model dielectric constants of GaP, GaAs, GaSb, InP, InAs, and InSb.
    Adachi S
    Phys Rev B Condens Matter; 1987 May; 35(14):7454-7463. PubMed ID: 9941048
    [No Abstract]   [Full Text] [Related]  

  • 17. Experimental study of the band structure of GaP, GaAs, GaSb, InP, InAs, and InSb.
    Williams GP; Cerrina F; Lapeyre GJ; Anderson JR; Smith RJ; Hermanson J
    Phys Rev B Condens Matter; 1986 Oct; 34(8):5548-5557. PubMed ID: 9940388
    [No Abstract]   [Full Text] [Related]  

  • 18. Heterointerface engineering of broken-gap InAs/GaSb multilayer structures.
    Liu JS; Zhu Y; Goley PS; Hudait MK
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2512-7. PubMed ID: 25568961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. InAs/InAsSb Strain-Balanced Superlattices for Longwave Infrared Detectors.
    Manyk T; Michalczewski K; Murawski K; Martyniuk P; Rutkowski J
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31013651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remote p-type Doping in GaSb/InAs Core-shell Nanowires.
    Ning F; Tang LM; Zhang Y; Chen KQ
    Sci Rep; 2015 Jun; 5():10813. PubMed ID: 26028535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.