These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 998289)

  • 1. Effect of arterial blood pressure reduction on renal hemodynamics in the developing lamb.
    Aperia A; Herin P
    Acta Physiol Scand; 1976 Dec; 98(4):387-94. PubMed ID: 998289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in renal hemodynamics and sodium excretion during saline infusion in lambs.
    Aperia A; Broberger O; Herin P
    Acta Physiol Scand; 1975 Aug; 94(4):442-50. PubMed ID: 1180085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of prostaglandin inhibition on renal function in the developing anesthetized lamb.
    Herin P; Aperia A
    Acta Physiol Scand; 1982 Jan; 114(1):75-9. PubMed ID: 7136748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of isotonic volume expansion on glomerular filtration rate and renal hemodynamics in the developing rat kidney.
    Elinder G; Aperia A; Herin P; Källskog O
    Acta Physiol Scand; 1980 Apr; 108(4):411-7. PubMed ID: 7415850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Total and local renal blood flow and filtration in the rat during reduced renal arterial blood pressure.
    Hope A; Clausen G; Rosivall L
    Acta Physiol Scand; 1981 Dec; 113(4):455-63. PubMed ID: 7348030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Renal responses of the nonclipped kidney of two-kidney/one-clip Goldblatt hypertensive rats to type 1 angiotensin II receptor blockade with candesartan.
    Cervenka L; Navar LG
    J Am Soc Nephrol; 1999 Jan; 10 Suppl 11():S197-201. PubMed ID: 9892163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of the redistribution of renal cortical blood flow during hemorrhagic hypotension in the dog.
    Stein JH; Boonjarern S; Mauk RC; Ferris TF
    J Clin Invest; 1973 Jan; 52(1):39-47. PubMed ID: 4682388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of volume expansion on hemodynamics of the hypoperfused rat kidney.
    Johnston PA; Bernard DB; Donohoe JF; Perrin NS; Levinsky NG
    J Clin Invest; 1979 Aug; 64(2):550-8. PubMed ID: 457868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of saline-induced natriuresis upon exposure of the kidney to the physical effects of extracellular fluid volume expansion.
    Fitzgibbons JP; Gennari FJ; Garfinkel HB; Cortell S
    J Clin Invest; 1974 Dec; 54(6):1428-36. PubMed ID: 4436441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of premercurial resetting of intrarenal vascular resistance on HgCl2-induced acute renal failure.
    Vanholder R; Matthys E; Leusen I; Lameire N
    J Lab Clin Med; 1986 Apr; 107(4):327-36. PubMed ID: 3958574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resetting of the pressure range for blood flow autoregulation in the rat kidney.
    Holm L; Morsing P; Casellas D; Persson AE
    Acta Physiol Scand; 1990 Mar; 138(3):395-401. PubMed ID: 2327265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of a thermal pulse decay system to assess avian renal blood flow during reduced renal arterial perfusion pressure.
    Wideman RF; Glahn RP; Bottje WG; Holmes KR
    Am J Physiol; 1992 Jan; 262(1 Pt 2):R90-8. PubMed ID: 1733344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Demonstraton of a role of physical factors as determinants of the natriuretic response to volume expansion.
    Martino JA; Earley LE
    J Clin Invest; 1967 Dec; 46(12):1963-78. PubMed ID: 6074001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal autoregulation: evidence for the transmural pressure hypothesis.
    Raeder M; Omvik P; Kiil F
    Am J Physiol; 1975 Jun; 228(6):1840-6. PubMed ID: 1155614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of renal nerves on renal hemodynamics. I. Direct stimulation and carotid occlusion.
    Katz MA; Shear L
    Nephron; 1975; 14(3-4):246-56. PubMed ID: 124020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renal and haemodynamic effects of nitric oxide blockade in a Wistar assay rat during high pressure cross-circulation of an isolated denervated kidney.
    Bergström G; Rudenstam J; Creutz J; Göthberg G; Karlström G
    Acta Physiol Scand; 1995 Jun; 154(2):241-52. PubMed ID: 7572220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renal hemodynamics and ammoniagenesis. Characteristics of the antiluminal site for glutamine extraction.
    Lemieux G; Vinay P; Cartier P
    J Clin Invest; 1974 Mar; 53(3):884-94. PubMed ID: 4812445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Angiotensin II and renal prostaglandin release in the dog. Interactions in controlling renal blood flow and glomerular filtration rate.
    Bugge JF; Stokke ES
    Acta Physiol Scand; 1994 Apr; 150(4):431-40. PubMed ID: 8036911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-dependent heterogeneity of filtration rate in the autoregulating rat kidney.
    Sjöquist M; Göransson A
    Acta Physiol Scand; 1985 Feb; 123(2):151-8. PubMed ID: 3885683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of bradykinin and papaverine on renal autoregulation and renin release in the anaesthetized dog.
    Bugge JF; Stokke ES; Kiil F
    Acta Physiol Scand; 1991 Dec; 143(4):431-7. PubMed ID: 1815477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.