These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 9983391)

  • 1. Dislocations and the motion of weakly pinned charge-density waves: Experiments on niobium triselenide containing mobile indium impurities.
    Gill JC
    Phys Rev B Condens Matter; 1996 Jun; 53(23):15586-15603. PubMed ID: 9983391
    [No Abstract]   [Full Text] [Related]  

  • 2. Scaling behavior in the charge-density-wave conductivity of niobium triselenide.
    Zhang XJ; Ong NP
    Phys Rev Lett; 1985 Dec; 55(26):2919-2922. PubMed ID: 10032273
    [No Abstract]   [Full Text] [Related]  

  • 3. Phase-plot studies of the alternating charge-density-wave current in niobium triselenide.
    Tessema GX; Ong NP
    Phys Rev B Condens Matter; 1985 Jan; 31(2):1055-1059. PubMed ID: 9935854
    [No Abstract]   [Full Text] [Related]  

  • 4. Pinning energies and phase slips in weakly pinned charge-density waves.
    Coppersmith SN
    Phys Rev B Condens Matter; 1991 Aug; 44(7):2887-2894. PubMed ID: 9999876
    [No Abstract]   [Full Text] [Related]  

  • 5. Nonlinear elastic response in solid helium: critical velocity or strain?
    Day J; Syshchenko O; Beamish J
    Phys Rev Lett; 2010 Feb; 104(7):075302. PubMed ID: 20366894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A quantitative and comparative study of radionuclidic and chemical impurities in water samples irradiated in a niobium target with Havar vs. niobium-sputtered Havar as entrance foils.
    Avila-Rodriguez MA; Wilson JS; McQuarrie SA
    Appl Radiat Isot; 2008 Dec; 66(12):1775-80. PubMed ID: 18539469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sliding conductivity without voltage oscillations in niobium triselenide.
    Zhang XJ; Ong NP; Eckert JC
    Phys Rev Lett; 1986 Mar; 56(11):1206-1209. PubMed ID: 10032597
    [No Abstract]   [Full Text] [Related]  

  • 8. Determination of the structural distortions corresponding to the q1- and q2-type modulations in niobium triselenide NbSe3.
    van Smaalen S ; de Boer JL ; Meetsma A; Graafsma H; Sheu HS; Darovskikh A; Coppens P; Levy F
    Phys Rev B Condens Matter; 1992 Feb; 45(6):3103-3106. PubMed ID: 10001863
    [No Abstract]   [Full Text] [Related]  

  • 9. Order and creep in flux lattices and charge density wave pinned by planar defects.
    Petković A; Nattermann T
    Phys Rev Lett; 2008 Dec; 101(26):267005. PubMed ID: 19437665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave conductivity of pinned spin-density waves and charge-density waves.
    Maki K; Virosztek A
    Phys Rev B Condens Matter; 1989 Feb; 39(4):2511-2515. PubMed ID: 9948492
    [No Abstract]   [Full Text] [Related]  

  • 11. Torsional instability in the single-chain limit of a transition metal trichalcogenide.
    Pham T; Oh S; Stetz P; Onishi S; Kisielowski C; Cohen ML; Zettl A
    Science; 2018 Jul; 361(6399):263-266. PubMed ID: 30026223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of pinned scroll waves in cardiac tissues by electric fields in a generic model of three-dimensional excitable media.
    Pan DB; Gao X; Feng X; Pan JT; Zhang H
    Sci Rep; 2016 Feb; 6():21876. PubMed ID: 26905367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. dc Resistivity of Quantum Critical, Charge Density Wave States from Gauge-Gravity Duality.
    Amoretti A; Areán D; Goutéraux B; Musso D
    Phys Rev Lett; 2018 Apr; 120(17):171603. PubMed ID: 29756813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depinning and creeplike motion of wetting fronts in weakly vibrated granular media.
    Balankin AS; García Otamendi E; Samayoa D; Patiño J; Rodríguez MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036313. PubMed ID: 22587186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comment on "Critical behavior of pinned charge-density waves below the threshold for sliding".
    Mihály G; Mihály L; Grüner G
    Phys Rev Lett; 1991 Dec; 67(27):3872. PubMed ID: 10044847
    [No Abstract]   [Full Text] [Related]  

  • 16. Critical behavior of pinned charge-density waves below the threshold for sliding.
    Middleton AA; Fisher DS
    Phys Rev Lett; 1991 Jan; 66(1):92-95. PubMed ID: 10043150
    [No Abstract]   [Full Text] [Related]  

  • 17. Avalanches and the renormalization group for pinned charge-density waves.
    Narayan O; Middleton AA
    Phys Rev B Condens Matter; 1994 Jan; 49(1):244-256. PubMed ID: 10009280
    [No Abstract]   [Full Text] [Related]  

  • 18. Search for aging effects in randomly pinned charge-density waves.
    Beleznay Á; Mihály G
    Phys Rev B Condens Matter; 1993 Nov; 48(19):14717-14720. PubMed ID: 10007909
    [No Abstract]   [Full Text] [Related]  

  • 19. Glassy dynamics of pinned charge-density waves.
    Erzan A; Veermans E; Heijungs R; Pietronero L
    Phys Rev B Condens Matter; 1990 Jun; 41(16):11522-11528. PubMed ID: 9993573
    [No Abstract]   [Full Text] [Related]  

  • 20. Interpretation of the complete excitation spectrum for pinned charge-density waves.
    Lyons WG; Tucker JR
    Phys Rev B Condens Matter; 1988 Aug; 38(6):4303-4306. PubMed ID: 9946812
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.