These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 9983823)

  • 1. Molecular-dynamics study of the melting of hexagonal and square lattices in two dimensions.
    Boyer LL
    Phys Rev B Condens Matter; 1996 Feb; 53(6):3145-3149. PubMed ID: 9983823
    [No Abstract]   [Full Text] [Related]  

  • 2. Design and evaluation of more accurate gradient operators on hexagonal lattices.
    Shima T; Saito S; Nakajima M
    IEEE Trans Pattern Anal Mach Intell; 2010 Jun; 32(6):961-73. PubMed ID: 20431124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melting of (MgO)(n) (n=18, 21, and 24) clusters simulated by molecular dynamics.
    Zhang Y; Chen HS; Liu BX; Zhang CR; Li XF; Wang YC
    J Chem Phys; 2010 May; 132(19):194304. PubMed ID: 20499960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Percolation on two- and three-dimensional lattices.
    Martins PH; Plascak JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046119. PubMed ID: 12786448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optochemical organization in a spatially modulated incandescent field: a single-step route to black and bright polymer lattices.
    Kasala K; Saravanamuttu K
    Langmuir; 2013 Jan; 29(4):1221-7. PubMed ID: 23252718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembly of kagome lattices, entangled webs and linear fibers with vibrating patchy particles in two dimensions.
    Chapela GA; Guzmán O; Martínez-González JA; Díaz-Leyva P; Quintana-H J
    Soft Matter; 2014 Dec; 10(45):9167-76. PubMed ID: 25319927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Madelung energy of Yukawa lattices.
    Pereira PC; Apolinario SW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046702. PubMed ID: 23214705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vortex-lattice dynamics in rotating spinor Bose-Einstein condensates.
    Schweikhard V; Coddington I; Engels P; Tung S; Cornell AE
    Phys Rev Lett; 2004 Nov; 93(21):210403. PubMed ID: 15600987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy thresholds of topological color codes on the hexagonal and square-octagonal lattices.
    Ohzeki M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011141. PubMed ID: 19658687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing pairwise interactions that stabilize open crystals: Truncated square and truncated hexagonal lattices.
    Piñeros WD; Truskett TM
    J Chem Phys; 2017 Apr; 146(14):144501. PubMed ID: 28411598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oscillatory behavior of vortex-lattice melting transition line in mesoscopic Bi_{2}Sr_{2}CaCu_{2}O_{8+y} superconductors.
    Ooi S; Mochiku T; Tachiki M; Hirata K
    Phys Rev Lett; 2015 Feb; 114(8):087001. PubMed ID: 25768774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hexagonal and square flux line lattices in CeCoIn5.
    Eskildsen MR; Dewhurst CD; Hoogenboom BW; Petrovic C; Canfield PC
    Phys Rev Lett; 2003 May; 90(18):187001. PubMed ID: 12786036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Melting in three-dimensional and two-dimensional Yukawa systems.
    Vaulina ОS; Koss XG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042155. PubMed ID: 26565216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photonic band gaps in two-dimensional square and hexagonal lattices.
    Villeneuve PR; Piché M
    Phys Rev B Condens Matter; 1992 Aug; 46(8):4969-4972. PubMed ID: 10004259
    [No Abstract]   [Full Text] [Related]  

  • 15. Self-organization of bouncing oil drops: two-dimensional lattices and spinning clusters.
    Lieber SI; Hendershott MC; Pattanaporkratana A; Maclennan JE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056308. PubMed ID: 17677165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dirac cones in two-dimensional systems: from hexagonal to square lattices.
    Liu Z; Wang J; Li J
    Phys Chem Chem Phys; 2013 Nov; 15(43):18855-62. PubMed ID: 24084752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Locations of multicritical points for spin glasses on regular lattices.
    Ohzeki M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021129. PubMed ID: 19391728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interplay between modulational instability and self-trapping of wavepackets in nonlinear discrete lattices.
    Chaves Filho VL; Lima RP; Lyra ML
    Chaos; 2015 Jun; 25(6):063101. PubMed ID: 26117095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lasing threshold of the bound states in the continuum in the plasmonic lattices.
    Pavlov A; Zabkov I; Klimov V
    Opt Express; 2018 Oct; 26(22):28948-28962. PubMed ID: 30470064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Square, hexagonal, and row phases of PTCDA and PTCDI on Ag-Si(111)square root(3) x square root(3)R30 degrees.
    Swarbrick JC; Ma J; Theobald JA; Oxtoby NS; O'Shea JN; Champness NR; Beton PH
    J Phys Chem B; 2005 Jun; 109(24):12167-74. PubMed ID: 16852501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.