These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 9984198)

  • 1. Effects of gap and band anisotropy on spin susceptibility in the oxide superconductors.
    Rendell JM; Carbotte JP
    Phys Rev B Condens Matter; 1996 Mar; 53(9):5889-5900. PubMed ID: 9984198
    [No Abstract]   [Full Text] [Related]  

  • 2. Spin-Orbit Coupling and Magnetic Anisotropy in Iron-Based Superconductors.
    Scherer DD; Andersen BM
    Phys Rev Lett; 2018 Jul; 121(3):037205. PubMed ID: 30085777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical current scaling and anisotropy in oxypnictide superconductors.
    Kidszun M; Haindl S; Thersleff T; Hänisch J; Kauffmann A; Iida K; Freudenberger J; Schultz L; Holzapfel B
    Phys Rev Lett; 2011 Apr; 106(13):137001. PubMed ID: 21517413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the Fermi-surface anisotropy in angle-dependent magnetic-field oscillations for identifying the energy-gap anisotropy of A(y)Fe(2)Se(2) superconductors.
    Das T; Vorontsov AB; Vekhter I; Graf MJ
    Phys Rev Lett; 2012 Nov; 109(18):187006. PubMed ID: 23215321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contributions of spin-lattice relaxation to the echo decay of planar Cu in high-temperature superconductors.
    Curro NJ; Slichter CP
    J Magn Reson; 1998 Feb; 130(2):186-94. PubMed ID: 9515089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fermi-liquid-based theory for the in-plane magnetic anisotropy in untwinned high-Tc superconductors.
    Eremin I; Manske D
    Phys Rev Lett; 2005 Feb; 94(6):067006. PubMed ID: 15783771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collective excitations and response functions of two-band band-singlet and spin-triplet superconductors.
    Lee HC
    J Phys Condens Matter; 2011 Feb; 23(5):055701. PubMed ID: 21406913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unconventional superconductivity in Ba(0.6)K(0.4)Fe2As2 from inelastic neutron scattering.
    Christianson AD; Goremychkin EA; Osborn R; Rosenkranz S; Lumsden MD; Malliakas CD; Todorov IS; Claus H; Chung DY; Kanatzidis MG; Bewley RI; Guidi T
    Nature; 2008 Dec; 456(7224):930-2. PubMed ID: 19092931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fermi surface topology and the upper critical field in two-band superconductors: application to MgB2.
    Dahm T; Schopohl N
    Phys Rev Lett; 2003 Jul; 91(1):017001. PubMed ID: 12906565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spin structure transition in La(1.6-x)Nd(0.4)Sr(x)CuO(4) superconductors.
    Ding JF; Yin YW; Xie L; Yu QX; Li XG
    J Phys Condens Matter; 2010 Jul; 22(27):275701. PubMed ID: 21399264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spin-wave contribution to the nuclear spin-lattice relaxation in triplet superconductors.
    Rostunov T; Demler E; Georges A
    Phys Rev Lett; 2006 Feb; 96(7):077002. PubMed ID: 16606127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spin susceptibility scaling in high-temperature superconductors.
    Ruvalds J; Rieck CT; Zhang J; Virosztek A
    Science; 1992 Jun; 256(5064):1664-7. PubMed ID: 17841087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical properties and electronic band structure of noncentrosymmetric Th7Co3 superconductor.
    Sahakyan M; Tran VH
    J Phys Condens Matter; 2016 May; 28(20):205701. PubMed ID: 27120582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of pairing interaction and magnetic fluctuations toward a band insulator in an electron-doped Li(x)ZrNCl Superconductor.
    Kasahara Y; Kishiume T; Takano T; Kobayashi K; Matsuoka E; Onodera H; Kuroki K; Taguchi Y; Iwasa Y
    Phys Rev Lett; 2009 Aug; 103(7):077004. PubMed ID: 19792678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unconventional Superconductivity in the BiS_{2}-Based Layered Superconductor NdO_{0.71}F_{0.29}BiS_{2}.
    Ota Y; Okazaki K; Yamamoto HQ; Yamamoto T; Watanabe S; Chen C; Nagao M; Watauchi S; Tanaka I; Takano Y; Shin S
    Phys Rev Lett; 2017 Apr; 118(16):167002. PubMed ID: 28474948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organic superconductors.
    Saito G; Yoshida Y
    Chem Rec; 2011 Jun; 11(3):124-45. PubMed ID: 21626655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nodes versus minima in the energy gap of iron pnictide superconductors from field-induced anisotropy.
    Vorontsov AB; Vekhter I
    Phys Rev Lett; 2010 Oct; 105(18):187004. PubMed ID: 21231129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disorder-induced topological phase transitions in two-dimensional spin-orbit coupled superconductors.
    Qin W; Xiao D; Chang K; Shen SQ; Zhang Z
    Sci Rep; 2016 Dec; 6():39188. PubMed ID: 27991541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropy of electrical transport in pnictide superconductors studied using Monte Carlo simulations of the spin-fermion model.
    Liang S; Alvarez G; Şen C; Moreo A; Dagotto E
    Phys Rev Lett; 2012 Jul; 109(4):047001. PubMed ID: 23006104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.