These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 9985282)
21. Finite-temperature free fermions and the Kardar-Parisi-Zhang equation at finite time. Dean DS; Le Doussal P; Majumdar SN; Schehr G Phys Rev Lett; 2015 Mar; 114(11):110402. PubMed ID: 25839245 [TBL] [Abstract][Full Text] [Related]
22. Geometric entropy of nonrelativistic fermions and two-dimensional strings. Das SR Phys Rev D Part Fields; 1995 Jun; 51(12):6901-6908. PubMed ID: 10018452 [No Abstract] [Full Text] [Related]
23. Gauge theory for finite-dimensional dynamical systems. Gurfil P Chaos; 2007 Jun; 17(2):023107. PubMed ID: 17614661 [TBL] [Abstract][Full Text] [Related]
24. Effective Lagrangian for a system of nonrelativistic fermions in 2+1 dimensions coupled to an electromagnetic field: Application to anyonic superconductors. Panigrahi PK; Ray R; Sakita B Phys Rev B Condens Matter; 1990 Sep; 42(7):4036-4048. PubMed ID: 9995925 [No Abstract] [Full Text] [Related]
25. Effective action of a (2+1)-dimensional system of nonrelativistic fermions in the presence of a uniform magnetic field: Dissipation effects. Sakhi S Phys Rev B Condens Matter; 1994 May; 49(19):13691-13696. PubMed ID: 10010312 [No Abstract] [Full Text] [Related]
26. Finite-temperature gauge theory from the transverse lattice. Dalley S; van de Sande B Phys Rev Lett; 2005 Oct; 95(16):162001. PubMed ID: 16241785 [TBL] [Abstract][Full Text] [Related]
27. New field-theoretic method for the virial expansion. Kaplan DB; Sun S Phys Rev Lett; 2011 Jul; 107(3):030601. PubMed ID: 21838343 [TBL] [Abstract][Full Text] [Related]
28. Nonlattice simulation for supersymmetric gauge theories in one dimension. Hanada M; Nishimura J; Takeuchi S Phys Rev Lett; 2007 Oct; 99(16):161602. PubMed ID: 17995236 [TBL] [Abstract][Full Text] [Related]
29. Parity Anomaly Cancellation in Three-Dimensional QED with a Single Massless Dirac Fermion. Karthik N; Narayanan R Phys Rev Lett; 2018 Jul; 121(4):041602. PubMed ID: 30095945 [TBL] [Abstract][Full Text] [Related]
30. Tricritical point in compact U(1) lattice gauge theory with dynamical fermions. Okawa M Phys Rev Lett; 1989 Mar; 62(11):1224-1227. PubMed ID: 10039615 [No Abstract] [Full Text] [Related]
31. Towards the continuum limit of lattice gauge theory with dynamical fermions. Kogut JB Phys Rev Lett; 1986 Jun; 56(24):2557-2560. PubMed ID: 10033029 [No Abstract] [Full Text] [Related]
32. Magnetic Catalysis in Graphene Effective Field Theory. DeTar C; Winterowd C; Zafeiropoulos S Phys Rev Lett; 2016 Dec; 117(26):266802. PubMed ID: 28059530 [TBL] [Abstract][Full Text] [Related]
33. Extended solutions of an SU(2) gauge theory with fermions. Sivers D Phys Rev D Part Fields; 1987 May; 35(10):3231-3238. PubMed ID: 9957568 [No Abstract] [Full Text] [Related]
34. Improved Hamiltonians for lattice gauge theory with fermions. Luo XQ; Chen QZ; Xu GC; Jiang JQ Phys Rev D Part Fields; 1994 Jul; 50(1):501-508. PubMed ID: 10017548 [No Abstract] [Full Text] [Related]
35. Thermodynamics of SU(2) gauge theory with dynamical, light fermions. Kogut JB; Polonyi J; Wyld HW; Sinclair DK Phys Rev D Part Fields; 1985 Jun; 31(12):3307-3309. PubMed ID: 9955670 [No Abstract] [Full Text] [Related]
36. Accumulation-point approach to lattice gauge theory with fermions. Kerler W; Möller G Phys Rev D Part Fields; 1990 Apr; 41(8):2581-2585. PubMed ID: 10012646 [No Abstract] [Full Text] [Related]
37. Conformal field theory as microscopic dynamics of incompressible Euler and Navier-Stokes equations. Fouxon I; Oz Y Phys Rev Lett; 2008 Dec; 101(26):261602. PubMed ID: 19437634 [TBL] [Abstract][Full Text] [Related]
38. Enhancing the thermal stability of Majorana fermions with redundancy using dipoles in optical lattices. Lin F; Scarola VW Phys Rev Lett; 2013 Nov; 111(22):220401. PubMed ID: 24329426 [TBL] [Abstract][Full Text] [Related]
39. Effect of Compactified Dimensions and Background Magnetic Fields on the Phase Structure of SU(N) Gauge Theories. D'Elia M; Mariti M Phys Rev Lett; 2017 Apr; 118(17):172001. PubMed ID: 28498687 [TBL] [Abstract][Full Text] [Related]
40. Infrared fixed point of the 12-fermion SU(3) gauge model based on 2-lattice Monte Carlo renomalization-group matching. Hasenfratz A Phys Rev Lett; 2012 Feb; 108(6):061601. PubMed ID: 22401055 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]