These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 9985381)
1. Theoretical studies of the temperature dependence of zero-field splitting of Cr3+ centers in ruby. Zheng WC; Wu SY Phys Rev B Condens Matter; 1996 Jul; 54(2):1117-1122. PubMed ID: 9985381 [No Abstract] [Full Text] [Related]
2. A theoretical study on the temperature dependence of zero-field splitting for the tetragonal Cr3+ center in MgO crystal. Zheng WC; Jia GM; He L; Yang WQ Spectrochim Acta A Mol Biomol Spectrosc; 2011 Feb; 78(2):818-20. PubMed ID: 21216186 [TBL] [Abstract][Full Text] [Related]
3. Studies of the defect structures of the trigonal Cr3+-Vc centers in fluoroperovskites from EPR and optical spectra. Wen-Chen Z; Qing Z; Xiao-Xuan W; Yang M Spectrochim Acta A Mol Biomol Spectrosc; 2006 Jan; 63(1):126-9. PubMed ID: 16344247 [TBL] [Abstract][Full Text] [Related]
4. Theoretical investigations of zero-field splitting of excited states for 3d3 ions in trigonal crystal fields. Wei Q; Yang Z; Wang C; Xu Q Spectrochim Acta A Mol Biomol Spectrosc; 2007 Nov; 68(3):665-8. PubMed ID: 17420153 [TBL] [Abstract][Full Text] [Related]
5. Theoretical investigations of the EPR parameters for Cr3+ and Mn4+ ions in PbTiO3 crystals. Wu XX; Zheng WC; Fang W Spectrochim Acta A Mol Biomol Spectrosc; 2008 Feb; 69(2):498-502. PubMed ID: 17556013 [TBL] [Abstract][Full Text] [Related]
6. Temperature and pressure dependence of the optical properties of Cr3+-doped Gd3Ga5O12 nanoparticles. Martín-Rodríguez R; Valiente R; Rodríguez F; Bettinelli M Nanotechnology; 2011 Jul; 22(26):265707. PubMed ID: 21576777 [TBL] [Abstract][Full Text] [Related]
7. Erratum: "Theoretical explanation of zero-field splitting and its pressure, and temperature dependence in NiSIF6. Wen-Chen Z Phys Rev B Condens Matter; 1989 Mar; 39(7):4725. PubMed ID: 9949150 [No Abstract] [Full Text] [Related]
8. Theoretical explanation of zero-field splitting and its pressure, stress, and temperature dependence in NiSiF6. Wen-Chen Z Phys Rev B Condens Matter; 1987 Dec; 36(16):8774-8776. PubMed ID: 9942703 [No Abstract] [Full Text] [Related]
9. EPR parameters and local geometry for Cr3+ and V2+ ions in HfS2 crystals. Qing Z; Wen-Chen Z; Xiao-Xuan W; Yang M Spectrochim Acta A Mol Biomol Spectrosc; 2005 Dec; 62(4-5):769-72. PubMed ID: 16103006 [TBL] [Abstract][Full Text] [Related]
10. Studies of the g factors of the ground 4A2 and the first excited 2E state of Cr3+ ions in emerald. Wei Q; Guo LX; Yang ZY; Wei B Spectrochim Acta A Mol Biomol Spectrosc; 2011 Sep; 79(5):1187-90. PubMed ID: 21570899 [TBL] [Abstract][Full Text] [Related]
11. Gyromagnetic factors and zero-field splitting of t23 terms of Cr3+ clusters with trigonal symmetry: Al2O3, CsMgCl3, and CsMgBr3. Maolu D; Rudowicz C Phys Rev B Condens Matter; 1992 Oct; 46(14):8974-8977. PubMed ID: 10002681 [No Abstract] [Full Text] [Related]
12. EPR spectroscopy of soybean lipoxygenase-1. Determination of the zero-field splitting constants of high-spin Fe(III) signals from temperature and microwave frequency dependence. Slappendel S; Veldink GA; Vliegenthart JF; Aasa R; Malmström BG Biochim Biophys Acta; 1980 Jul; 624(1):30-9. PubMed ID: 6250632 [TBL] [Abstract][Full Text] [Related]
13. The temperature dependence of Cr3+:YAG zero-phonon lines. Marceddu M; Manca M; Ricci PC; Anedda A J Phys Condens Matter; 2012 Apr; 24(13):135401. PubMed ID: 22392847 [TBL] [Abstract][Full Text] [Related]
14. Simulation of multi-frequency EPR spectra for a distribution of the zero-field splitting. Azarkh M; Groenen EJ J Magn Reson; 2015 Jun; 255():106-13. PubMed ID: 25955436 [TBL] [Abstract][Full Text] [Related]
15. Investigations of the EPR zero-field splitting and the defect structure for Mn(2+) and Fe(3+) ions in anatase crystals. Qu GQ; Wu XX; Zheng WC Spectrochim Acta A Mol Biomol Spectrosc; 2007 Nov; 68(3):905-7. PubMed ID: 17418632 [TBL] [Abstract][Full Text] [Related]
16. Valley polarization in Si(100) at zero magnetic field. Takashina K; Ono Y; Fujiwara A; Takahashi Y; Hirayama Y Phys Rev Lett; 2006 Jun; 96(23):236801. PubMed ID: 16803388 [TBL] [Abstract][Full Text] [Related]
17. Optical thermometry based on level anticrossing in silicon carbide. Anisimov AN; Simin D; Soltamov VA; Lebedev SP; Baranov PG; Astakhov GV; Dyakonov V Sci Rep; 2016 Sep; 6():33301. PubMed ID: 27624819 [TBL] [Abstract][Full Text] [Related]
18. Theoretical determination of the zero-field splitting in copper acetate monohydrate. Maurice R; Sivalingam K; Ganyushin D; Guihéry N; de Graaf C; Neese F Inorg Chem; 2011 Jul; 50(13):6229-36. PubMed ID: 21634387 [TBL] [Abstract][Full Text] [Related]