These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 9985603)

  • 1. Vortex pinning by cylindrical defects in type-II superconductors: Numerical solutions to the Ginzburg-Landau equations.
    Maurer SM; Yeh N; Tombrello TA
    Phys Rev B Condens Matter; 1996 Dec; 54(21):15372-15379. PubMed ID: 9985603
    [No Abstract]   [Full Text] [Related]  

  • 2. Giant vortex states in type I superconductors simulated by Ginzburg-Landau equations.
    Palonen H; Jäykkä J; Paturi P
    J Phys Condens Matter; 2013 Sep; 25(38):385702. PubMed ID: 23995237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical simulation of vortex dynamics in type-II superconductors in oscillating magnetic field using time-dependent Ginzburg-Landau equations.
    Jafri HM; Ma X; Zhao C; Liang D; Huang H; Liu Z; Chen LQ
    J Phys Condens Matter; 2017 Dec; 29(50):505701. PubMed ID: 28925380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-dependent Ginzburg-Landau treatment of rf magnetic vortices in superconductors: Vortex semiloops in a spatially nonuniform magnetic field.
    Oripov B; Anlage SM
    Phys Rev E; 2020 Mar; 101(3-1):033306. PubMed ID: 32289922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical relaxation approach for solving the general Ginzburg-Landau equations for type-II superconductors.
    Wang ZD; Hu C
    Phys Rev B Condens Matter; 1991 Dec; 44(21):11918-11923. PubMed ID: 9999328
    [No Abstract]   [Full Text] [Related]  

  • 6. Angle dependent molecular dynamics simulation of flux pinning in YBCO superconductors with artificial pinning sites.
    Paturi P; Malmivirta M; Hynninen T; Huhtinen H
    J Phys Condens Matter; 2018 Aug; 30(31):315902. PubMed ID: 29957598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crossover from type I to type II regime of mesoscopic superconductors of the first group.
    Cadorim LR; Calsolari TO; Zadorosny R; Sardella E
    J Phys Condens Matter; 2020 Feb; 32(9):095304. PubMed ID: 31578005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vortices in high-performance high-temperature superconductors.
    Kwok WK; Welp U; Glatz A; Koshelev AE; Kihlstrom KJ; Crabtree GW
    Rep Prog Phys; 2016 Nov; 79(11):116501. PubMed ID: 27652716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vortex motion and the Hall effect in type-II superconductors: A time-dependent Ginzburg-Landau theory approach.
    Dorsey AT
    Phys Rev B Condens Matter; 1992 Oct; 46(13):8376-8392. PubMed ID: 10002601
    [No Abstract]   [Full Text] [Related]  

  • 10. Ginzburg-Landau-type theory of spin superconductivity.
    Bao ZQ; Xie XC; Sun QF
    Nat Commun; 2013; 4():2951. PubMed ID: 24335888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Edge effect pinning in mesoscopic superconducting strips with non-uniform distribution of defects.
    Kimmel GJ; Glatz A; Vinokur VM; Sadovskyy IA
    Sci Rep; 2019 Jan; 9(1):211. PubMed ID: 30659219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Type H superconductors and the vortex lattice.
    Abrikosov AA
    Chemphyschem; 2004 Jul; 5(7):925-9. PubMed ID: 15298378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of thermal gradients for control of vortex matter in mesoscopic superconductors.
    Duarte ECS; Presotto A; Okimoto D; Souto VS; Sardella E; Zadorosny R
    J Phys Condens Matter; 2019 Oct; 31(40):405901. PubMed ID: 31247610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of different methods for analyzing μSR line shapes in the vortex state of type-II superconductors.
    Maisuradze A; Khasanov R; Shengelaya A; Keller H
    J Phys Condens Matter; 2009 Feb; 21(7):075701. PubMed ID: 21817334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interface and vortex motion in the two-component complex dissipative Ginzburg-Landau equation in two-dimensional space.
    Yabunaka S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042925. PubMed ID: 25375585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Velocimetry of superconducting vortices based on stroboscopic resonances.
    Jelić ŽL; Milošević MV; Silhanek AV
    Sci Rep; 2016 Oct; 6():35687. PubMed ID: 27774995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vortex lattice structural transitions: a Ginzburg-Landau model approach.
    Klironomos AD; Dorsey AT
    Phys Rev Lett; 2003 Aug; 91(9):097002. PubMed ID: 14525203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stochastic theory of quantum vortex on a sphere.
    Kuratsuji H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031150. PubMed ID: 22587081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virial theorem for Ginzburg-Landau theories with potential applications to numerical studies of type-II superconductors.
    Doria MM; Gubernatis JE; Rainer D
    Phys Rev B Condens Matter; 1989 May; 39(13):9573-9575. PubMed ID: 9947694
    [No Abstract]   [Full Text] [Related]  

  • 20. Magnetic field delocalization and flux inversion in fractional vortices in two-component superconductors.
    Babaev E; Jäykkä J; Speight M
    Phys Rev Lett; 2009 Dec; 103(23):237002. PubMed ID: 20366165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.