These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 9985695)

  • 1. Quantum Monte Carlo evidence for d-wave pairing in the two-dimensional Hubbard model at a van Hove singularity.
    Husslein T; Morgenstern I; Newns DM; Pattnaik PC; Singer JM; Matuttis HG
    Phys Rev B Condens Matter; 1996 Dec; 54(22):16179-16182. PubMed ID: 9985695
    [No Abstract]   [Full Text] [Related]  

  • 2. Enhanced
    Yang S; Liu X; Li W; Yang J; Ying T; Li X; Sun X
    J Phys Condens Matter; 2022 Jul; 34(37):. PubMed ID: 35790173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum Monte Carlo study of the Hubbard model with next-nearest-neighbor hopping t': pairing and magnetism.
    Yang S; Ying T; Li W; Yang J; Sun X; Li X
    J Phys Condens Matter; 2021 Mar; 33(11):115601. PubMed ID: 33316793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic cluster quantum Monte Carlo simulations of a two-dimensional Hubbard model with stripelike charge-density-wave modulations: interplay between inhomogeneities and the superconducting state.
    Maier TA; Alvarez G; Summers M; Schulthess TC
    Phys Rev Lett; 2010 Jun; 104(24):247001. PubMed ID: 20867327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robustness of the Van Hove scenario for high-T(c) superconductors.
    Irkhin VY; Katanin AA; Katsnelson MI
    Phys Rev Lett; 2002 Aug; 89(7):076401. PubMed ID: 12190536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superconducting phase and pairing fluctuations in the half-filled two-dimensional Hubbard model.
    Sentef M; Werner P; Gull E; Kampf AP
    Phys Rev Lett; 2011 Sep; 107(12):126401. PubMed ID: 22026778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous deformation of the fermi surface due to strong correlation in the two-dimensional t- J model.
    Himeda A; Ogata M
    Phys Rev Lett; 2000 Nov; 85(20):4345-8. PubMed ID: 11060634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possible cluster pairing correlation in the checkerboard Hubbard model: a quantum Monte Carlo study.
    Wu Y; Fang S; Liu G; Zhang Y
    J Phys Condens Matter; 2019 Sep; 31(37):375601. PubMed ID: 31146272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the two-particle propagator for the Hubbard model with the help of the Hubbard-I approximation.
    Rozhkov AV; Rakhmanov AL
    J Phys Condens Matter; 2011 Feb; 23(6):065601. PubMed ID: 21406930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superconducting fluctuations in the normal state of the two-dimensional Hubbard model.
    Chen X; LeBlanc JP; Gull E
    Phys Rev Lett; 2015 Sep; 115(11):116402. PubMed ID: 26406843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism for Unconventional Superconductivity in the Hole-Doped Rashba-Hubbard Model.
    Greco A; Schnyder AP
    Phys Rev Lett; 2018 Apr; 120(17):177002. PubMed ID: 29756818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of superconductivity in the Hubbard model by buckling and breathing phonons.
    Macridin A; Moritz B; Jarrell M; Maier T
    J Phys Condens Matter; 2012 Nov; 24(47):475603. PubMed ID: 23110956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic study of d-wave superconductivity in the 2D repulsive Hubbard model.
    Maier TA; Jarrell M; Schulthess TC; Kent PR; White JB
    Phys Rev Lett; 2005 Dec; 95(23):237001. PubMed ID: 16384330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum Monte Carlo simulation in the canonical ensemble at finite temperature.
    Van Houcke K; Rombouts SM; Pollet L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056703. PubMed ID: 16803070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic correlations and pairing in the 1/5-depleted square lattice Hubbard model.
    Khatami E; Singh RR; Pickett WE; Scalettar RT
    Phys Rev Lett; 2014 Sep; 113(10):106402. PubMed ID: 25238374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chiral Spin Density Wave and d+id Superconductivity in the Magic-Angle-Twisted Bilayer Graphene.
    Liu CC; Zhang LD; Chen WQ; Yang F
    Phys Rev Lett; 2018 Nov; 121(21):217001. PubMed ID: 30517799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vertex correction to pairing at a Van Hove singularity.
    Krishnamurthy HR; Newns DM; Pattnaik PC; Tsuei CC; Chi CC
    Phys Rev B Condens Matter; 1994 Feb; 49(5):3520-3523. PubMed ID: 10011217
    [No Abstract]   [Full Text] [Related]  

  • 18. Projector Quantum Monte Carlo Method for Nonlinear Wave Functions.
    Schwarz LR; Alavi A; Booth GH
    Phys Rev Lett; 2017 Apr; 118(17):176403. PubMed ID: 28498711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematics of electrons near a van hove singularity.
    Gonzalez J; Guinea F; Vozmediano MA
    Phys Rev Lett; 2000 May; 84(21):4930-3. PubMed ID: 10990834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extended van Hove singularity and superconducting instability in doped graphene.
    McChesney JL; Bostwick A; Ohta T; Seyller T; Horn K; González J; Rotenberg E
    Phys Rev Lett; 2010 Apr; 104(13):136803. PubMed ID: 20481902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.