These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 9986389)

  • 1. Surface kinetics of zinc-blende (001) GaN.
    Brandt O; Yang H; Ploog KH
    Phys Rev B Condens Matter; 1996 Aug; 54(7):4432-4435. PubMed ID: 9986389
    [No Abstract]   [Full Text] [Related]  

  • 2. Triple-twin domains in Mg doped GaN wurtzite nanowires: structural and electronic properties of this zinc-blende-like stacking.
    Arbiol J; Estradé S; Prades JD; Cirera A; Furtmayr F; Stark C; Laufer A; Stutzmann M; Eickhoff M; Gass MH; Bleloch AL; Peiró F; Morante JR
    Nanotechnology; 2009 Apr; 20(14):145704. PubMed ID: 19420534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge separation in wurtzite/zinc-blende heterojunction GaN nanowires.
    Wang Z; Li J; Gao F; Weber WJ
    Chemphyschem; 2010 Oct; 11(15):3329-32. PubMed ID: 20803600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface reconstructions of zinc-blende GaN/GaAs(001) in plasma-assisted molecular-beam epitaxy.
    Brandt O; Yang H; Jenichen B; Suzuki Y; Däweritz L; Ploog KH
    Phys Rev B Condens Matter; 1995 Jul; 52(4):R2253-R2256. PubMed ID: 9981384
    [No Abstract]   [Full Text] [Related]  

  • 5. Scanning tunneling microscopy and surface simulation of zinc-blende GaN(001) intrinsic 4x reconstruction: linear gallium tetramers?
    Al-Brithen HA; Yang R; Haider MB; Constantin C; Lu E; Smith AR; Sandler N; Ordejón P
    Phys Rev Lett; 2005 Sep; 95(14):146102. PubMed ID: 16241671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical response of wurtzite and zinc blende GaP nanowire arrays.
    Aghaeipour M; Anttu N; Nylund G; Berg A; Lehmann S; Pistol ME
    Opt Express; 2015 Nov; 23(23):30177-87. PubMed ID: 26698498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selected growth of cubic and hexagonal GaN epitaxial films on polar MgO(111).
    Lazarov VK; Zimmerman J; Cheung SH; Li L; Weinert M; Gajdardziska-Josifovska M
    Phys Rev Lett; 2005 Jun; 94(21):216101. PubMed ID: 16090332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conduction-electron spin resonance in zinc-blende GaN thin films.
    Fanciulli M; Lei T; Moustakas TD
    Phys Rev B Condens Matter; 1993 Nov; 48(20):15144-15147. PubMed ID: 10008048
    [No Abstract]   [Full Text] [Related]  

  • 9. Temperature-dependent optical band gap of the metastable zinc-blende structure beta -GaN.
    Ramírez-Flores G; Navarro-Contreras H; Lastras-Martínez A; Powell RC; Greene JE
    Phys Rev B Condens Matter; 1994 Sep; 50(12):8433-8438. PubMed ID: 9974861
    [No Abstract]   [Full Text] [Related]  

  • 10. Zn-dopant dependent defect evolution in GaN nanowires.
    Yang B; Liu B; Wang Y; Zhuang H; Liu Q; Yuan F; Jiang X
    Nanoscale; 2015 Oct; 7(39):16237-45. PubMed ID: 26371967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An aberration-corrected STEM study of structural defects in epitaxial GaN thin films grown by ion beam assisted MBE.
    Poppitz D; Lotnyk A; Gerlach JW; Lenzner J; Grundmann M; Rauschenbach B
    Micron; 2015 Jun; 73():1-8. PubMed ID: 25846303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth by molecular beam epitaxy and properties of inclined GaN nanowires on Si(001) substrate.
    Borysiuk J; Zytkiewicz ZR; Sobanska M; Wierzbicka A; Klosek K; Korona KP; Perkowska PS; Reszka A
    Nanotechnology; 2014 Apr; 25(13):135610. PubMed ID: 24598248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure control of zinc-blende CdSe/CdS core/shell nanocrystals: synthesis and structure-dependent optical properties.
    Nan W; Niu Y; Qin H; Cui F; Yang Y; Lai R; Lin W; Peng X
    J Am Chem Soc; 2012 Dec; 134(48):19685-93. PubMed ID: 23131103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray detection with zinc-blende (cubic) GaN Schottky diodes.
    Gohil T; Whale J; Lioliou G; Novikov SV; Foxon CT; Kent AJ; Barnett AM
    Sci Rep; 2016 Jul; 6():29535. PubMed ID: 27403806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructure and strain in InGaN/GaN superlattices grown in GaN nanowires.
    Kehagias T; Dimitrakopulos GP; Becker P; Kioseoglou J; Furtmayr F; Koukoula T; Häusler I; Chernikov A; Chatterjee S; Karakostas T; Solowan HM; Schwarz UT; Eickhoff M; Komninou P
    Nanotechnology; 2013 Nov; 24(43):435702. PubMed ID: 24076624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A crystallographic investigation of GaN nanostructures by reciprocal space mapping in a grazing incidence geometry.
    Lee S; Sohn Y; Kim C; Lee DR; Lee HH
    Nanotechnology; 2009 May; 20(21):215703. PubMed ID: 19423942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Why does wurtzite form in nanowires of III-V zinc blende semiconductors?
    Glas F; Harmand JC; Patriarche G
    Phys Rev Lett; 2007 Oct; 99(14):146101. PubMed ID: 17930689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current imaging and electromigration-induced splitting of GaN nanowires as revealed by conductive atomic force microscopy.
    Li C; Bando Y; Golberg D
    ACS Nano; 2010 Apr; 4(4):2422-8. PubMed ID: 20235513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contributed Review: Experimental characterization of inverse piezoelectric strain in GaN HEMTs via micro-Raman spectroscopy.
    Bagnall KR; Wang EN
    Rev Sci Instrum; 2016 Jun; 87(6):061501. PubMed ID: 27370419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alloyed (ZnSe)(x)(CuInSe2)(1-x) and CuInSe(x)S(2-x) nanocrystals with a monophase zinc blende structure over the entire composition range.
    Li S; Zhao Z; Liu Q; Huang L; Wang G; Pan D; Zhang H; He X
    Inorg Chem; 2011 Dec; 50(23):11958-64. PubMed ID: 21942215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.