These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 9986430)

  • 1. Anharmonic effects in light scattering due to optical phonons in CuGaS2.
    González J; Moya E; Chervin JC
    Phys Rev B Condens Matter; 1996 Aug; 54(7):4707-4713. PubMed ID: 9986430
    [No Abstract]   [Full Text] [Related]  

  • 2. Heat transport enhanced by optical phonons in one-dimensional anharmonic lattices with alternating bonds.
    Xiong D; Zhang Y; Zhao H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052128. PubMed ID: 24329235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron-Phonon Scattering in the Presence of Soft Modes and Electron Mobility in SrTiO_{3} Perovskite from First Principles.
    Zhou JJ; Hellman O; Bernardi M
    Phys Rev Lett; 2018 Nov; 121(22):226603. PubMed ID: 30547621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anharmonic decay time, isotopic scattering time, and inhomogeneous line broadening of optical phonons in 70Ge, 76Ge, and natural Ge crystals.
    Fuchs HD; Grein CH; Devlen RI; Kuhl J; Cardona M
    Phys Rev B Condens Matter; 1991 Oct; 44(16):8633-8642. PubMed ID: 9998819
    [No Abstract]   [Full Text] [Related]  

  • 5. CuGaS
    Zhao M; Huang F; Lin H; Zhou J; Xu J; Wu Q; Wang Y
    Nanoscale; 2016 Sep; 8(37):16670-16676. PubMed ID: 27714070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman-like light scattering from acoustic phonons in photonic crystal fiber.
    Dainese P; Russell PS; Wiederhecker GS; Joly N; Fragnito HL; Laude V; Khelif A
    Opt Express; 2006 May; 14(9):4141-50. PubMed ID: 19516563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single source precursor driven phase selective synthesis of Au-CuGaS
    Ghosh AB; Saha N; Sarkar A; Dutta AK; Satra J; Adhikary B
    Dalton Trans; 2018 Jan; 47(4):1071-1081. PubMed ID: 29261196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct measurement of the lifetime of optical phonons in single-walled carbon nanotubes.
    Song D; Wang F; Dukovic G; Zheng M; Semke ED; Brus LE; Heinz TF
    Phys Rev Lett; 2008 Jun; 100(22):225503. PubMed ID: 18643430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anharmonic motions of Kr in the clathrate hydrate.
    Tse JS; Klug DD; Zhao JY; Sturhahn W; Alp EE; Baumert J; Gutt C; Johnson MR; Press W
    Nat Mater; 2005 Dec; 4(12):917-21. PubMed ID: 16267573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coherent control of acoustic phonons by seeded Brillouin scattering in polarization-maintaining fibers.
    Feng Y; Zhang F; Zheng Y; Chen L; Shen D; Liu W; Wan W
    Opt Lett; 2019 May; 44(9):2270-2273. PubMed ID: 31042201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of collinear and noncollinear phonons in anharmonic scattering processes and their role in ultrasound absorption of fast quasi-transverse modes in cubic crystals.
    Kuleyev IG; Kuleyev II; Arapova IY
    J Phys Condens Matter; 2010 Mar; 22(9):095403. PubMed ID: 21389415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All-Phononic Digital Transistor on the Basis of Gap-Soliton Dynamics in an Anharmonic Oscillator Ladder.
    Malishava M; Khomeriki R
    Phys Rev Lett; 2015 Sep; 115(10):104301. PubMed ID: 26382679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observation of induced longitudinal and shear acoustic phonons by Brillouin scattering.
    Yoshida T; Matsukawa M; Yanagitani T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jun; 58(6):1255-60. PubMed ID: 21693407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. THz Acoustic Spectroscopy by using Double Quantum Wells and Ultrafast Optical Spectroscopy.
    Wei FJ; Yeh YH; Sheu JK; Lin KH
    Sci Rep; 2016 Jun; 6():28577. PubMed ID: 27346494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron and optical phonon temperatures in electrically biased graphene.
    Berciaud S; Han MY; Mak KF; Brus LE; Kim P; Heinz TF
    Phys Rev Lett; 2010 Jun; 104(22):227401. PubMed ID: 20867202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dispersive phonon linewidths: the E2 phonons of ZnO.
    Serrano J; Manjón FJ; Romero AH; Widulle F; Lauck R; Cardona M
    Phys Rev Lett; 2003 Feb; 90(5):055510. PubMed ID: 12633376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phonon self-energy and origin of anomalous neutron scattering spectra in SnTe and PbTe thermoelectrics.
    Li CW; Hellman O; Ma J; May AF; Cao HB; Chen X; Christianson AD; Ehlers G; Singh DJ; Sales BC; Delaire O
    Phys Rev Lett; 2014 May; 112(17):175501. PubMed ID: 24836255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoelectrocatalytic reduction of nitrobenzene on Bi-doped CuGaS
    Andrade MAS; Mascaro LH
    Chemosphere; 2018 Dec; 212():79-86. PubMed ID: 30142568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coherent optical phonon generation in Bi3Ge4O12.
    Chen Z; Gao Y; Minch BC; Decamp MF
    J Phys Condens Matter; 2011 Sep; 23(38):385402. PubMed ID: 21914929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rigid ion model of high field transport in GaN.
    Yamakawa S; Akis R; Faralli N; Saraniti M; Goodnick SM
    J Phys Condens Matter; 2009 Apr; 21(17):174206. PubMed ID: 21825410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.