These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
721 related articles for article (PubMed ID: 9986735)
41. betagamma subunits of heterotrimeric G-proteins contribute to Ca2+ release at fertilization in the sea urchin. Voronina E; Wessel GM J Cell Sci; 2004 Dec; 117(Pt 25):5995-6005. PubMed ID: 15536121 [TBL] [Abstract][Full Text] [Related]
42. Calcium oscillations and mammalian egg activation. Malcuit C; Kurokawa M; Fissore RA J Cell Physiol; 2006 Mar; 206(3):565-73. PubMed ID: 16155907 [TBL] [Abstract][Full Text] [Related]
43. A wave of IP3 production accompanies the fertilization Ca2+ wave in the egg of the frog, Xenopus laevis: theoretical and experimental support. Wagner J; Fall CP; Hong F; Sims CE; Allbritton NL; Fontanilla RA; Moraru II; Loew LM; Nuccitelli R Cell Calcium; 2004 May; 35(5):433-47. PubMed ID: 15003853 [TBL] [Abstract][Full Text] [Related]
44. eIF4E-binding proteins are differentially modified after ammonia versus intracellular calcium activation of sea urchin unfertilized eggs. Oulhen N; Mulner-Lorillon O; Cormier P Mol Reprod Dev; 2010 Jan; 77(1):83-91. PubMed ID: 19777548 [TBL] [Abstract][Full Text] [Related]
45. Calcium-mediated inactivation of the MAP kinase pathway in sea urchin eggs at fertilization. Kumano M; Carroll DJ; Denu JM; Foltz KR Dev Biol; 2001 Aug; 236(1):244-57. PubMed ID: 11456458 [TBL] [Abstract][Full Text] [Related]
46. Fertilization stimulates long-lasting oscillations of CaMKII activity in mouse eggs. Markoulaki S; Matson S; Ducibella T Dev Biol; 2004 Aug; 272(1):15-25. PubMed ID: 15242787 [TBL] [Abstract][Full Text] [Related]
47. Essential role of the inositol 1,4,5-trisphosphate receptor/Ca2+ release channel in Ca2+ waves and Ca2+ oscillations at fertilization of mammalian eggs. Miyazaki S; Shirakawa H; Nakada K; Honda Y Dev Biol; 1993 Jul; 158(1):62-78. PubMed ID: 8392472 [TBL] [Abstract][Full Text] [Related]
48. The cytosolic sperm factor that triggers Ca2+ oscillations and egg activation in mammals is a novel phospholipase C: PLCzeta. Swann K; Larman MG; Saunders CM; Lai FA Reproduction; 2004 Apr; 127(4):431-9. PubMed ID: 15047934 [TBL] [Abstract][Full Text] [Related]
49. After fertilization of sea urchin eggs, eIF4G is post-translationally modified and associated with the cap-binding protein eIF4E. Oulhen N; Salaün P; Cosson B; Cormier P; Morales J J Cell Sci; 2007 Feb; 120(Pt 3):425-34. PubMed ID: 17213333 [TBL] [Abstract][Full Text] [Related]
50. Intracellular pH shift leads to microtubule assembly and microtubule-mediated motility during sea urchin fertilization: correlations between elevated intracellular pH and microtubule activity and depressed intracellular pH and microtubule disassembly. Schatten G; Bestor T; Balczon R; Henson J; Schatten H Eur J Cell Biol; 1985 Jan; 36(1):116-27. PubMed ID: 4038941 [TBL] [Abstract][Full Text] [Related]
51. Calmodulin-dependent protein kinase II triggers mouse egg activation and embryo development in the absence of Ca2+ oscillations. Knott JG; Gardner AJ; Madgwick S; Jones KT; Williams CJ; Schultz RM Dev Biol; 2006 Aug; 296(2):388-95. PubMed ID: 16824507 [TBL] [Abstract][Full Text] [Related]
52. Effect on sperm-induced activation current and increase of cytosolic Ca2+ by agents that modify the mobilization of [Ca2+]i. I. Heparin and pentosan polysulfate. Mohri T; Ivonnet PI; Chambers EL Dev Biol; 1995 Nov; 172(1):139-57. PubMed ID: 7589794 [TBL] [Abstract][Full Text] [Related]
53. Microtubule assembly is required for the formation of the pronuclei, nuclear lamin acquisition, and DNA synthesis during mouse, but not sea urchin, fertilization. Schatten H; Simerly C; Maul G; Schatten G Gamete Res; 1989 Jul; 23(3):309-22. PubMed ID: 2777170 [TBL] [Abstract][Full Text] [Related]
54. Synaptotagmin I is involved in the regulation of cortical granule exocytosis in the sea urchin. Leguia M; Conner S; Berg L; Wessel GM Mol Reprod Dev; 2006 Jul; 73(7):895-905. PubMed ID: 16572466 [TBL] [Abstract][Full Text] [Related]
55. Synergistic release of calcium in sea urchin eggs by caffeine and ryanodine. Buck WR; Rakow TL; Shen SS Exp Cell Res; 1992 Sep; 202(1):59-66. PubMed ID: 1387366 [TBL] [Abstract][Full Text] [Related]
57. Egg activation at fertilization: where it all begins. Runft LL; Jaffe LA; Mehlmann LM Dev Biol; 2002 May; 245(2):237-54. PubMed ID: 11977978 [TBL] [Abstract][Full Text] [Related]
58. Egg activation events are regulated by the duration of a sustained [Ca2+]cyt signal in the mouse. Ozil JP; Markoulaki S; Toth S; Matson S; Banrezes B; Knott JG; Schultz RM; Huneau D; Ducibella T Dev Biol; 2005 Jun; 282(1):39-54. PubMed ID: 15936328 [TBL] [Abstract][Full Text] [Related]
59. Spatiotemporal relationships among early events of fertilization in sea urchin eggs revealed by multiview microscopy. Suzuki K; Tanaka Y; Nakajima Y; Hirano K; Itoh H; Miyata H; Hayakawa T; Kinosita K Biophys J; 1995 Mar; 68(3):739-48. PubMed ID: 7756541 [TBL] [Abstract][Full Text] [Related]
60. Activation of Src and release of intracellular calcium by phosphatidic acid during Xenopus laevis fertilization. Bates RC; Fees CP; Holland WL; Winger CC; Batbayar K; Ancar R; Bergren T; Petcoff D; Stith BJ Dev Biol; 2014 Feb; 386(1):165-80. PubMed ID: 24269904 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]