These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 9986740)

  • 1. Localization of MIP 26 in nuclear fiber cells from aged normal and age-related nuclear cataractous human lenses.
    Boyle DL; Takemoto LJ
    Exp Eye Res; 1999 Jan; 68(1):41-9. PubMed ID: 9986740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confocal microscopy of human lens membranes in aged normal and nuclear cataracts.
    Boyle DL; Takemoto LJ
    Invest Ophthalmol Vis Sci; 1997 Dec; 38(13):2826-32. PubMed ID: 9418736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modifications to rat lens major intrinsic protein in selenite-induced cataract.
    Schey KL; Fowler JG; Shearer TR; David L
    Invest Ophthalmol Vis Sci; 1999 Mar; 40(3):657-67. PubMed ID: 10067969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MP26 messenger RNA sequences in normal and cataractous lens. A molecular probe for abundance and distribution of a fiber cell-specific gene product.
    Bekhor I
    Invest Ophthalmol Vis Sci; 1988 May; 29(5):802-13. PubMed ID: 3366569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses.
    Srivastava K; Chaves JM; Srivastava OP; Kirk M
    Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution, spherical structure and predicted Mie scattering of multilamellar bodies in human age-related nuclear cataracts.
    Gilliland KO; Freel CD; Johnsen S; Craig Fowler W; Costello MJ
    Exp Eye Res; 2004 Oct; 79(4):563-76. PubMed ID: 15381040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multilamellar bodies as potential scattering particles in human age-related nuclear cataracts.
    Gilliland KO; Freel CD; Lane CW; Fowler WC; Costello MJ
    Mol Vis; 2001 Jun; 7():120-30. PubMed ID: 11435998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses.
    Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP
    Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cataract formation in a strain of rats selected for high oxidative stress.
    Marsili S; Salganik RI; Albright CD; Freel CD; Johnsen S; Peiffer RL; Costello MJ
    Exp Eye Res; 2004 Nov; 79(5):595-612. PubMed ID: 15500819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural characterization of lipid membranes from clear and cataractous human lenses.
    Borchman D; Lamba OP; Yappert MC
    Exp Eye Res; 1993 Aug; 57(2):199-208. PubMed ID: 8405186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of major intrinsic protein (aquaporin-0) with fiber connexins in lens development.
    Yu XS; Jiang JX
    J Cell Sci; 2004 Feb; 117(Pt 6):871-80. PubMed ID: 14762116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution and type of morphological damage in human nuclear age-related cataracts.
    Al-Ghoul KJ; Lane CW; Taylor VL; Fowler WC; Costello MJ
    Exp Eye Res; 1996 Mar; 62(3):237-51. PubMed ID: 8690033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fourier analysis of textural variations in human normal and cataractous lens nuclear fiber cell cytoplasm.
    Taylor VL; Costello MJ
    Exp Eye Res; 1999 Aug; 69(2):163-74. PubMed ID: 10433853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lens structure in MIP-deficient mice.
    Al-Ghoul KJ; Kirk T; Kuszak AJ; Zoltoski RK; Shiels A; Kuszak JR
    Anat Rec A Discov Mol Cell Evol Biol; 2003 Aug; 273(2):714-30. PubMed ID: 12845708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Existence of deamidated alphaB-crystallin fragments in normal and cataractous human lenses.
    Srivastava OP; Srivastava K
    Mol Vis; 2003 Apr; 9():110-8. PubMed ID: 12707643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of human lens major intrinsic protein structure.
    Schey KL; Little M; Fowler JG; Crouch RK
    Invest Ophthalmol Vis Sci; 2000 Jan; 41(1):175-82. PubMed ID: 10634618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human lens phospholipid changes with age and cataract.
    Huang L; Grami V; Marrero Y; Tang D; Yappert MC; Rasi V; Borchman D
    Invest Ophthalmol Vis Sci; 2005 May; 46(5):1682-9. PubMed ID: 15851569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulation of the hydroxyl free radical markers meta-, ortho-tyrosine and DOPA in cataractous lenses is accompanied by a lower protein and phenylalanine content of the water-soluble phase.
    Molnár GA; Nemes V; Biró Z; Ludány A; Wagner Z; Wittmann I
    Free Radic Res; 2005 Dec; 39(12):1359-66. PubMed ID: 16298866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasma membrane Ca-ATPase isoform expression in human cataractous lenses compared to age-matched clear lenses.
    Marian MJ; Mukhopadhyay P; Borchman D; Paterson CA
    Ophthalmic Res; 2008; 40(2):86-93. PubMed ID: 18223301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological changes in human nuclear cataracts of late-onset diabetics.
    al-Ghoul KJ; Costello MJ
    Exp Eye Res; 1993 Oct; 57(4):469-86. PubMed ID: 8282033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.