These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
412 related articles for article (PubMed ID: 9987115)
1. CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in gram-positive bacteria. Derré I; Rapoport G; Msadek T Mol Microbiol; 1999 Jan; 31(1):117-31. PubMed ID: 9987115 [TBL] [Abstract][Full Text] [Related]
2. Regulation of Streptococcus pneumoniae clp genes and their role in competence development and stress survival. Chastanet A; Prudhomme M; Claverys JP; Msadek T J Bacteriol; 2001 Dec; 183(24):7295-307. PubMed ID: 11717289 [TBL] [Abstract][Full Text] [Related]
3. ClpE, a novel type of HSP100 ATPase, is part of the CtsR heat shock regulon of Bacillus subtilis. Derré I; Rapoport G; Devine K; Rose M; Msadek T Mol Microbiol; 1999 May; 32(3):581-93. PubMed ID: 10320580 [TBL] [Abstract][Full Text] [Related]
4. CtsR controls class III heat shock gene expression in the human pathogen Listeria monocytogenes. Nair S; Derré I; Msadek T; Gaillot O; Berche P Mol Microbiol; 2000 Feb; 35(4):800-11. PubMed ID: 10692157 [TBL] [Abstract][Full Text] [Related]
5. The CtsR regulator of stress response is active as a dimer and specifically degraded in vivo at 37 degrees C. Derré I; Rapoport G; Msadek T Mol Microbiol; 2000 Oct; 38(2):335-47. PubMed ID: 11069659 [TBL] [Abstract][Full Text] [Related]
6. Clp-mediated proteolysis in Gram-positive bacteria is autoregulated by the stability of a repressor. Krüger E; Zühlke D; Witt E; Ludwig H; Hecker M EMBO J; 2001 Feb; 20(4):852-63. PubMed ID: 11179229 [TBL] [Abstract][Full Text] [Related]
7. ctsR of Lactococcus lactis encodes a negative regulator of clp gene expression. Varmanen P; Ingmer H; Vogensen FK Microbiology (Reading); 2000 Jun; 146 ( Pt 6)():1447-1455. PubMed ID: 10846223 [TBL] [Abstract][Full Text] [Related]
8. The first gene of the Bacillus subtilis clpC operon, ctsR, encodes a negative regulator of its own operon and other class III heat shock genes. Krüger E; Hecker M J Bacteriol; 1998 Dec; 180(24):6681-8. PubMed ID: 9852015 [TBL] [Abstract][Full Text] [Related]
9. ClpP of Streptococcus salivarius is a novel member of the dually regulated class of stress response genes in gram-positive bacteria. Chastanet A; Msadek T J Bacteriol; 2003 Jan; 185(2):683-7. PubMed ID: 12511518 [TBL] [Abstract][Full Text] [Related]
11. CtsR is the master regulator of stress response gene expression in Oenococcus oeni. Grandvalet C; Coucheney F; Beltramo C; Guzzo J J Bacteriol; 2005 Aug; 187(16):5614-23. PubMed ID: 16077106 [TBL] [Abstract][Full Text] [Related]
12. Disruption and analysis of the clpB, clpC, and clpE genes in Lactococcus lactis: ClpE, a new Clp family in gram-positive bacteria. Ingmer H; Vogensen FK; Hammer K; Kilstrup M J Bacteriol; 1999 Apr; 181(7):2075-83. PubMed ID: 10094684 [TBL] [Abstract][Full Text] [Related]
13. The CtsR regulator of Listeria monocytogenes contains a variant glycine repeat region that affects piezotolerance, stress resistance, motility and virulence. Karatzas KA; Wouters JA; Gahan CG; Hill C; Abee T; Bennik MH Mol Microbiol; 2003 Sep; 49(5):1227-38. PubMed ID: 12940983 [TBL] [Abstract][Full Text] [Related]
14. The CtsR regulator controls the expression of clpC, clpE and clpP and is required for the virulence of Enterococcus faecalis in an invertebrate model. Cassenego AP; de Oliveira NE; Laport MS; Abranches J; Lemos JA; Giambiagi-deMarval M Antonie Van Leeuwenhoek; 2016 Sep; 109(9):1253-9. PubMed ID: 27388279 [TBL] [Abstract][Full Text] [Related]
15. clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor sigmaH. Engels S; Schweitzer JE; Ludwig C; Bott M; Schaffer S Mol Microbiol; 2004 Apr; 52(1):285-302. PubMed ID: 15049827 [TBL] [Abstract][Full Text] [Related]
16. Regulation and Physiological Significance of ClpC and ClpP in Streptococcus mutans. Lemos JA; Burne RA J Bacteriol; 2002 Nov; 184(22):6357-66. PubMed ID: 12399506 [TBL] [Abstract][Full Text] [Related]
17. Comparative genomics reveal novel heat shock regulatory mechanisms in Staphylococcus aureus and other Gram-positive bacteria. Chastanet A; Fert J; Msadek T Mol Microbiol; 2003 Feb; 47(4):1061-73. PubMed ID: 12581359 [TBL] [Abstract][Full Text] [Related]
18. Stress induction of the Bacillus subtilis clpP gene encoding a homologue of the proteolytic component of the Clp protease and the involvement of ClpP and ClpX in stress tolerance. Gerth U; Krüger E; Derré I; Msadek T; Hecker M Mol Microbiol; 1998 May; 28(4):787-802. PubMed ID: 9643546 [TBL] [Abstract][Full Text] [Related]
19. Comparative proteomic analysis of Lactobacillus plantarum WCFS1 and ΔctsR mutant strains under physiological and heat stress conditions. Russo P; De la Luz Mohedano M; Capozzi V; De Palencia PF; López P; Spano G; Fiocco D Int J Mol Sci; 2012; 13(9):10680-10696. PubMed ID: 23109816 [TBL] [Abstract][Full Text] [Related]
20. Global transcriptional analysis of clpP mutations of type 2 Streptococcus pneumoniae and their effects on physiology and virulence. Robertson GT; Ng WL; Foley J; Gilmour R; Winkler ME J Bacteriol; 2002 Jul; 184(13):3508-20. PubMed ID: 12057945 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]