These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 9988001)

  • 1. Modeling defibrillation: effects of fiber curvature.
    Trayanova N; Skouibine K
    J Electrocardiol; 1998; 31 Suppl():23-9. PubMed ID: 9988001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extension of refractoriness in a model of cardiac defibrillation.
    Trayanova NA; Aguel F; Skouibine K
    Pac Symp Biocomput; 1999; ():240-51. PubMed ID: 10380201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual electrode effects in defibrillation.
    Trayanova N; Skouibine K; Moore P
    Prog Biophys Mol Biol; 1998; 69(2-3):387-403. PubMed ID: 9785947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anode/cathode make and break phenomena in a model of defibrillation.
    Skouibine KB; Trayanova NA; Moore PK
    IEEE Trans Biomed Eng; 1999 Jul; 46(7):769-77. PubMed ID: 10396895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroporation in a model of cardiac defibrillation.
    Ashihara T; Yao T; Namba T; Ito M; Ikeda T; Kawase A; Toda S; Suzuki T; Inagaki M; Sugimachi M; Kinoshita M; Nakazawa K
    J Cardiovasc Electrophysiol; 2001 Dec; 12(12):1393-403. PubMed ID: 11797997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Success and failure of the defibrillation shock: insights from a simulation study.
    Skouibine K; Trayanova N; Moore P
    J Cardiovasc Electrophysiol; 2000 Jul; 11(7):785-96. PubMed ID: 10921796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual electrode effects in transvenous defibrillation-modulation by structure and interface: evidence from bidomain simulations and optical mapping.
    Entcheva E; Eason J; Efimov IR; Cheng Y; Malkin R; Claydon F
    J Cardiovasc Electrophysiol; 1998 Sep; 9(9):949-61. PubMed ID: 9786075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Termination of spiral waves with biphasic shocks: role of virtual electrode polarization.
    Anderson C; Trayanova N; Skouibine K
    J Cardiovasc Electrophysiol; 2000 Dec; 11(12):1386-96. PubMed ID: 11196563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vortex cordis as a mechanism of postshock activation: arrhythmia induction study using a bidomain model.
    Ashihara T; Namba T; Yao T; Ozawa T; Kawase A; Ikeda T; Nakazawa K; Ito M
    J Cardiovasc Electrophysiol; 2003 Mar; 14(3):295-302. PubMed ID: 12716113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of virtual electrodes in arrhythmogenesis: pinwheel experiment revisited.
    Lindblom AE; Roth BJ; Trayanova NA
    J Cardiovasc Electrophysiol; 2000 Mar; 11(3):274-85. PubMed ID: 10749350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Success and failure of biphasic shocks: results of bidomain simulations.
    Anderson C; Trayanova NA
    Math Biosci; 2001 Dec; 174(2):91-109. PubMed ID: 11730859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A numerically efficient model for simulation of defibrillation in an active bidomain sheet of myocardium.
    Skouibine K; Trayanova N; Moore P
    Math Biosci; 2000 Jul; 166(1):85-100. PubMed ID: 10882801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defibrillation shocks produce different effects on Purkinje fibers and ventricular muscle: implications for successful defibrillation, refibrillation and postshock arrhythmia.
    Li HG; Jones DL; Yee R; Klein GJ
    J Am Coll Cardiol; 1993 Aug; 22(2):607-14. PubMed ID: 8335836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane refractoriness and excitation induced in cardiac fibers by monophasic and biphasic shocks.
    Trayanova N; Bray MA
    J Cardiovasc Electrophysiol; 1997 Jul; 8(7):745-57. PubMed ID: 9255682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterns of and mechanisms for shock-induced polarization in the heart: a bidomain analysis.
    Entcheva E; Trayanova NA; Claydon FJ
    IEEE Trans Biomed Eng; 1999 Mar; 46(3):260-70. PubMed ID: 10097461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of ventricular myocardium characteristics on the defibrillation threshold.
    Qian L; Wang J; Jin L; Song B; Wu X
    Technol Health Care; 2018; 26(S1):241-248. PubMed ID: 29710752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spiral waves in two-dimensional models of ventricular muscle: formation of a stationary core.
    Beaumont J; Davidenko N; Davidenko JM; Jalife J
    Biophys J; 1998 Jul; 75(1):1-14. PubMed ID: 9649363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing the computational efficiency of a bidomain model of defibrillation using a time-dependent activating function.
    Skouibine K; Krassowska W
    Ann Biomed Eng; 2000 Jul; 28(7):772-80. PubMed ID: 11016414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virtual electrode polarization in the far field: implications for external defibrillation.
    Efimov IR; Aguel F; Cheng Y; Wollenzier B; Trayanova N
    Am J Physiol Heart Circ Physiol; 2000 Sep; 279(3):H1055-70. PubMed ID: 10993768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonuniform muscle fiber orientation causes spiral wave drift in a finite element model of cardiac action potential propagation.
    Rogers JM; McCulloch AD
    J Cardiovasc Electrophysiol; 1994 Jun; 5(6):496-509. PubMed ID: 8087294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.