These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 9988013)

  • 1. Improved estimation of pericardial potentials from body-surface maps using individualized torso models.
    Arthur RM; Beetner DG; Ambos HD; Cain ME
    J Electrocardiol; 1998; 31 Suppl():106-13. PubMed ID: 9988013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct inference of the spectra of pericardial potentials using the boundary-element method.
    Beetner DG; Arthur RM
    Ann Biomed Eng; 1999; 27(4):498-507. PubMed ID: 10468234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new method for regularization parameter determination in the inverse problem of electrocardiography.
    Johnston PR; Gulrajani RM
    IEEE Trans Biomed Eng; 1997 Jan; 44(1):19-39. PubMed ID: 9214781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wavelet-promoted sparsity for non-invasive reconstruction of electrical activity of the heart.
    Cluitmans M; Karel J; Bonizzi P; Volders P; Westra R; Peeters R
    Med Biol Eng Comput; 2018 Nov; 56(11):2039-2050. PubMed ID: 29752679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How Accurate Is Inverse Electrocardiographic Mapping? A Systematic In Vivo Evaluation.
    Bear LR; LeGrice IJ; Sands GB; Lever NA; Loiselle DS; Paterson DJ; Cheng LK; Smaill BH
    Circ Arrhythm Electrophysiol; 2018 May; 11(5):e006108. PubMed ID: 29700057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noninvasive recovery of epicardial potentials in a realistic heart-torso geometry. Normal sinus rhythm.
    Messinger-Rapport BJ; Rudy Y
    Circ Res; 1990 Apr; 66(4):1023-39. PubMed ID: 2317885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the Tikhonov Regularization Parameter on the Accuracy of the Inverse Problem in Electrocardiography.
    Wang T; Karel J; Bonizzi P; Peeters RLM
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of heart-surface potentials using regularized multipole sources.
    Beetner DG; Arthur RM
    IEEE Trans Biomed Eng; 2004 Aug; 51(8):1366-73. PubMed ID: 15311821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noninvasive imaging of cardiac transmembrane potentials within three-dimensional myocardium by means of a realistic geometry anisotropic heart model.
    He B; Li G; Zhang X
    IEEE Trans Biomed Eng; 2003 Oct; 50(10):1190-202. PubMed ID: 14560773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of the spatial covariance in computing pericardial potentials.
    van Oosterom A
    IEEE Trans Biomed Eng; 1999 Jul; 46(7):778-87. PubMed ID: 10396896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrocardiographic imaging: II. Effect of torso inhomogeneities on noninvasive reconstruction of epicardial potentials, electrograms, and isochrones.
    Ramanathan C; Rudy Y
    J Cardiovasc Electrophysiol; 2001 Feb; 12(2):241-52. PubMed ID: 11232625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of experimental and modeling errors on electrocardiographic inverse formulations.
    Cheng LK; Bodley JM; Pullan AJ
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):23-32. PubMed ID: 12617521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrocardiographic imaging: I. Effect of torso inhomogeneities on body surface electrocardiographic potentials.
    Ramanathan C; Rudy Y
    J Cardiovasc Electrophysiol; 2001 Feb; 12(2):229-40. PubMed ID: 11232624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of the fingerprint of the electrophysiological abnormalities that increase vulnerability to life-threatening ventricular arrhythmias.
    Cain ME; Arthur RM; Trobaugh JW
    J Interv Card Electrophysiol; 2003 Oct; 9(2):103-18. PubMed ID: 14574021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational issues of importance to the inverse recovery of epicardial potentials in a realistic heart-torso geometry.
    Messinger-Rapport BJ; Rudy Y
    Math Biosci; 1989 Nov; 97(1):85-120. PubMed ID: 2520207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of simulated QRS isointegral maps resulting from pacing at adjacent sites: implications for the spatial resolution of pace mapping using body surface potentials.
    Hren R; Punske BB
    J Electrocardiol; 1998; 31 Suppl():135-44. PubMed ID: 9988019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noninvasive reconstruction of three-dimensional ventricular activation sequence from the inverse solution of distributed equivalent current density.
    Liu Z; Liu C; He B
    IEEE Trans Med Imaging; 2006 Oct; 25(10):1307-18. PubMed ID: 17024834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forward and inverse problems of electrocardiography: modeling and recovery of epicardial potentials in humans.
    Shahidi AV; Savard P; Nadeau R
    IEEE Trans Biomed Eng; 1994 Mar; 41(3):249-56. PubMed ID: 8045577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epicardial potential distribution reconstruction from recordings of intravenous and transthoracic mapping catheters: a feasibility study.
    Yilmaz B
    Med Eng Phys; 2007 Nov; 29(9):937-45. PubMed ID: 17110153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of measured and computed epicardial potentials from a patient-specific inverse model.
    Budgett DM; Monro DM; Edwards SW; Stanbridge RD
    J Electrocardiol; 1993; 26 Suppl():165-73. PubMed ID: 8189121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.