These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 9988525)
41. Mobile loop mutations in an archaeal inositol monophosphatase: modulating three-metal ion assisted catalysis and lithium inhibition. Li Z; Stieglitz KA; Shrout AL; Wei Y; Weis RM; Stec B; Roberts MF Protein Sci; 2010 Feb; 19(2):309-18. PubMed ID: 20027624 [TBL] [Abstract][Full Text] [Related]
42. Conformation and stability of the Streptococcus pyogenes pSM19035-encoded site-specific beta recombinase, and identification of a folding intermediate. Bhardwaj A; Welfle K; Misselwitz R; Ayora S; Alonso JC; Welfle H Biol Chem; 2006 May; 387(5):525-33. PubMed ID: 16740123 [TBL] [Abstract][Full Text] [Related]
43. Urea-induced denaturation of beta-trypsin: an evidence for a molten globule state. Brumano MH; Oliveira MG Protein Pept Lett; 2004 Apr; 11(2):133-40. PubMed ID: 15078201 [TBL] [Abstract][Full Text] [Related]
44. Inositol-1 (or 4)-monophosphatase from Glycine max embryo axes is a phosphatase with broad substrate specificity that includes phytate dephosphorylation. Islas-Flores I; Villanueva MA Biochim Biophys Acta; 2007 Apr; 1770(4):543-50. PubMed ID: 17241743 [TBL] [Abstract][Full Text] [Related]
45. Conformational stability and catalytic activity of HIV-1 protease are both enhanced at high salt concentration. Szeltner Z; Polgár L J Biol Chem; 1996 Mar; 271(10):5458-63. PubMed ID: 8621402 [TBL] [Abstract][Full Text] [Related]
46. Reversible dissociation and unfolding of dimeric creatine kinase isoenzyme MM in guanidine hydrochloride and urea. Couthon F; Clottes E; Ebel C; Vial C Eur J Biochem; 1995 Nov; 234(1):160-70. PubMed ID: 8529636 [TBL] [Abstract][Full Text] [Related]
47. Kinetic characterization of enzyme forms involved in metal ion activation and inhibition of myo-inositol monophosphatase. Strasser F; Pelton PD; Ganzhorn AJ Biochem J; 1995 Apr; 307 ( Pt 2)(Pt 2):585-93. PubMed ID: 7733900 [TBL] [Abstract][Full Text] [Related]
48. Local folding of the N-terminal domain of Escherichia coli RecA controls protein-protein interaction. Masui R; Mikawa T; Kuramitsu S J Biol Chem; 1997 Oct; 272(44):27707-15. PubMed ID: 9346912 [TBL] [Abstract][Full Text] [Related]
49. Folding and self-assembly of herpes simplex virus type 1 thymidine kinase. Wurth C; Thomas RM; Folkers G; Scapozza L J Mol Biol; 2001 Oct; 313(3):657-70. PubMed ID: 11676546 [TBL] [Abstract][Full Text] [Related]
50. Mechanism of inositol monophosphatase, the putative target of lithium therapy. Pollack SJ; Atack JR; Knowles MR; McAllister G; Ragan CI; Baker R; Fletcher SR; Iversen LL; Broughton HB Proc Natl Acad Sci U S A; 1994 Jun; 91(13):5766-70. PubMed ID: 8016062 [TBL] [Abstract][Full Text] [Related]
51. A partially unfolded state of equine beta-lactoglobulin at pH 8.7. Fujiwara K; Ikeguchi M; Sugai S J Protein Chem; 2001 Feb; 20(2):131-7. PubMed ID: 11563693 [TBL] [Abstract][Full Text] [Related]
52. Predissociated dimers and molten globule monomers in the equilibrium unfolding of yeast glutathione reductase. Louzada PR; Sebollela A; Scaramello ME; Ferreira ST Biophys J; 2003 Nov; 85(5):3255-61. PubMed ID: 14581225 [TBL] [Abstract][Full Text] [Related]
53. Mammalian inositol monophosphatase: the identification of residues important for the binding of Mg2+ and Li+ ions using fluorescence spectroscopy and site-directed mutagenesis. Gore MG; Greasley P; McAllister G; Ragan CI Biochem J; 1993 Dec; 296 ( Pt 3)(Pt 3):811-5. PubMed ID: 8280081 [TBL] [Abstract][Full Text] [Related]
54. ONIOM (DFT:MM) study of the catalytic mechanism of myo-inositol monophosphatase: essential role of water in enzyme catalysis in the two-metal mechanism. Wang X; Hirao H J Phys Chem B; 2013 Jan; 117(3):833-42. PubMed ID: 23268704 [TBL] [Abstract][Full Text] [Related]
55. Structural studies of metal binding by inositol monophosphatase: evidence for two-metal ion catalysis. Bone R; Frank L; Springer JP; Atack JR Biochemistry; 1994 Aug; 33(32):9468-76. PubMed ID: 8068621 [TBL] [Abstract][Full Text] [Related]
56. Equilibrium unfolding of dimeric and engineered monomeric forms of lambda Cro (F58W) repressor and the effect of added salts: evidence for the formation of folded monomer induced by sodium perchlorate. Maity H; Mossing MC; Eftink MR Arch Biochem Biophys; 2005 Feb; 434(1):93-107. PubMed ID: 15629113 [TBL] [Abstract][Full Text] [Related]
57. The unfolding of trp aporepressor as a function of pH: evidence for an unfolding intermediate. Eftink MR; Helton KJ; Beavers A; Ramsay GD Biochemistry; 1994 Aug; 33(34):10220-8. PubMed ID: 8068663 [TBL] [Abstract][Full Text] [Related]
58. Rough energy landscapes in protein folding: dimeric E. coli Trp repressor folds through three parallel channels. Gloss LM; Simler BR; Matthews CR J Mol Biol; 2001 Oct; 312(5):1121-34. PubMed ID: 11580254 [TBL] [Abstract][Full Text] [Related]
59. Organophosphorus hydrolase is a remarkably stable enzyme that unfolds through a homodimeric intermediate. Grimsley JK; Scholtz JM; Pace CN; Wild JR Biochemistry; 1997 Nov; 36(47):14366-74. PubMed ID: 9398154 [TBL] [Abstract][Full Text] [Related]
60. Denaturation of an extremely stable hyperthermophilic protein occurs via a dimeric intermediate. Powers SL; Robinson CR; Robinson AS Extremophiles; 2007 Jan; 11(1):179-89. PubMed ID: 17072686 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]