These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 9988670)
1. Effects on rapid cooling of small samples in quenching. Cao Q; Hua TC Ann N Y Acad Sci; 1998 Sep; 858():262-9. PubMed ID: 9988670 [TBL] [Abstract][Full Text] [Related]
2. Assessment of external heat transfer coefficient during oocyte vitrification in liquid and slush nitrogen using numerical simulations to determine cooling rates. Santos MV; Sansinena M; Zaritzky N; Chirife J Cryo Letters; 2012; 33(1):31-40. PubMed ID: 22434120 [TBL] [Abstract][Full Text] [Related]
3. Determination of heat transfer coefficients in plastic French straws plunged in liquid nitrogen. Santos MV; Sansinena M; Chirife J; Zaritzky N Cryobiology; 2014 Dec; 69(3):488-95. PubMed ID: 25445573 [TBL] [Abstract][Full Text] [Related]
4. Numerical investigation into thermal effects of pre-cooling zone in vitrification-based cryopreservation process. Tsai HH; Tsai CH; Wu WT; Chen FZ; Chiang PJ Cryobiology; 2015 Feb; 70(1):32-7. PubMed ID: 25481669 [TBL] [Abstract][Full Text] [Related]
5. Investigations on the heat transport capability of a cryogenic oscillating heat pipe and its application in achieving ultra-fast cooling rates for cell vitrification cryopreservation. Han X; Ma H; Jiao A; Critser JK Cryobiology; 2008 Jun; 56(3):195-203. PubMed ID: 18430413 [TBL] [Abstract][Full Text] [Related]
6. DETERMINATION OF CONVECTIVE HEAT TRANSFER COEFFICIENT AT THE OUTER SURFACE OF A CRYOVIAL BEING PLUNGED INTO LIQUID NITROGEN. Wang T; Zhao G; Tang HY; Jiang ZD Cryo Letters; 2015; 36(4):285-8. PubMed ID: 26576004 [TBL] [Abstract][Full Text] [Related]
7. DETERMINATION OF HEAT TRANSFER COEFFICIENTS FOR FRENCH PLASTIC SEMEN STRAW SUSPENDED IN STATIC NITROGEN VAPOR OVER LIQUID NITROGEN. Santo MV; Sansinena M; Chirife J; Zaritzky N Cryo Letters; 2015; 36(6):413-23. PubMed ID: 26963888 [TBL] [Abstract][Full Text] [Related]
8. Comparison of heat transfer in liquid and slush nitrogen by numerical simulation of cooling rates for French straws used for sperm cryopreservation. Sansinena M; Santos MV; Zaritzky N; Chirife J Theriogenology; 2012 May; 77(8):1717-21. PubMed ID: 22225685 [TBL] [Abstract][Full Text] [Related]
9. Theoretical prediction of the effect of heat transfer parameters on cooling rates of liquid-filled plastic straws used for cryopreservation of spermatozoa. Sansinen M; Santos MV; Zaritzky N; Baez R; Chirife J Cryo Letters; 2010; 31(2):120-9. PubMed ID: 20687454 [TBL] [Abstract][Full Text] [Related]
10. Experimental determination of surface heat transfer coefficient in a dry ice-ethanol cooling bath using a numerical approach. Santos MV; Sansinena M; Zaritzky N; Chirife J Cryo Letters; 2017; 38(2):119-124. PubMed ID: 28534055 [TBL] [Abstract][Full Text] [Related]
11. Numerical simulation of cooling rates in vitrification systems used for oocyte cryopreservation. Sansinena M; Santos MV; Zaritzky N; Chirife J Cryobiology; 2011 Aug; 63(1):32-7. PubMed ID: 21540134 [TBL] [Abstract][Full Text] [Related]
12. Numerical investigations of transient heat transfer characteristics and vitrification tendencies in ultra-fast cell cooling processes. Jiao A; Han X; Critser JK; Ma H Cryobiology; 2006 Jun; 52(3):386-92. PubMed ID: 16616118 [TBL] [Abstract][Full Text] [Related]
13. Preparation of subcooled liquid argon and test of its cooling ability. Li M; Sun Y; Xu X; Zhang S Cryobiology; 2024 Sep; 116():104949. PubMed ID: 39117031 [TBL] [Abstract][Full Text] [Related]
14. High heat flux cooling by microbubble emission boiling. Suzuki K; Saitoh H; Matsumoto K Ann N Y Acad Sci; 2002 Oct; 974():364-77. PubMed ID: 12446336 [TBL] [Abstract][Full Text] [Related]
15. Numerical analysis to determine the performance of different oocyte vitrification devices for cryopreservation. Li W; Zhou X; Wang H; Liu B Cryo Letters; 2012; 33(2):144-50. PubMed ID: 22576118 [TBL] [Abstract][Full Text] [Related]
16. Heat transfer from protein crystals: implications for flash-cooling and X-ray beam heating. Kriminski S; Kazmierczak M; Thorne RE Acta Crystallogr D Biol Crystallogr; 2003 Apr; 59(Pt 4):697-708. PubMed ID: 12657789 [TBL] [Abstract][Full Text] [Related]
17. High-Throughput Non-Contact Vitrification of Cell-Laden Droplets Based on Cell Printing. Shi M; Ling K; Yong KW; Li Y; Feng S; Zhang X; Pingguan-Murphy B; Lu TJ; Xu F Sci Rep; 2015 Dec; 5():17928. PubMed ID: 26655688 [TBL] [Abstract][Full Text] [Related]
18. Reversible Cryopreservation of Living Cells Using an Electron Microscopy Cryo-Fixation Method. Huebinger J; Han HM; Grabenbauer M PLoS One; 2016; 11(10):e0164270. PubMed ID: 27711254 [TBL] [Abstract][Full Text] [Related]
19. Low-temperature electron microscopy for the study of polysaccharide ultrastructures in hydrogels. I. Theoretical and technical considerations. Serp D; Mueller M; Von Stockar U; Marison IW Biotechnol Bioeng; 2002 Aug; 79(3):243-52. PubMed ID: 12115412 [TBL] [Abstract][Full Text] [Related]
20. Optimum conditions for cryoquenching of small tissue blocks in liquid coolants. Elder HY; Gray CC; Jardine AG; Chapman JN; Biddlecombe WH J Microsc; 1982 Apr; 126(Pt 1):45-61. PubMed ID: 7069794 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]