These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 9989254)

  • 1. A systematic approach to evaluate the modification of lens proteins by glycation-induced crosslinking.
    Lee KW; Simpson G; Ortwerth B
    Biochim Biophys Acta; 1999 Jan; 1453(1):141-51. PubMed ID: 9989254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitors of advanced glycation end product-associated protein cross-linking.
    Lehman TD; Ortwerth BJ
    Biochim Biophys Acta; 2001 Feb; 1535(2):110-9. PubMed ID: 11341999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of glycation crosslinking by the sugar-dependent incorporation of [14C]lysine into protein.
    Prabhakaram M; Ortwerth BJ
    Anal Biochem; 1994 Feb; 216(2):305-12. PubMed ID: 8179185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of Pentosidine Cross-Linking in Myoglobin by Glyoxal: Detection of Fluorescent Advanced Glycation End Product.
    Banerjee S
    J Fluoresc; 2017 Jul; 27(4):1213-1219. PubMed ID: 28299531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein modification by the degradation products of ascorbate: formation of a novel pyrrole from the Maillard reaction of L-threose with proteins.
    Nagaraj RH; Monnier VM
    Biochim Biophys Acta; 1995 Nov; 1253(1):75-84. PubMed ID: 7492603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sugar-mediated crosslinking of alpha-biotinylated-Lys to cysteamine-agarose support: a method to isolate Maillard Lys-Lys-like crosslinks.
    Linetsky M; LeGrand RD; Mossine VV; Ortwerth BJ
    Appl Biochem Biotechnol; 2001 Apr; 94(1):71-96. PubMed ID: 11393357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ascorbic acid-induced crosslinking of lens proteins: evidence supporting a Maillard reaction.
    Ortwerth BJ; Olesen PR
    Biochim Biophys Acta; 1988 Aug; 956(1):10-22. PubMed ID: 3408736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The generation of superoxide anions in glycation reactions with sugars, osones, and 3-deoxyosones.
    Ortwerth BJ; James H; Simpson G; Linetsky M
    Biochem Biophys Res Commun; 1998 Apr; 245(1):161-5. PubMed ID: 9535801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mass Spectrometric Analysis of Glyoxal and Methylglyoxal-Induced Modifications in Human Hemoglobin from Poorly Controlled Type 2 Diabetes Mellitus Patients.
    Chen HJ; Chen YC; Hsiao CF; Chen PF
    Chem Res Toxicol; 2015 Dec; 28(12):2377-89. PubMed ID: 26517015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and mechanism of formation of human lens fluorophore LM-1. Relationship to vesperlysine A and the advanced Maillard reaction in aging, diabetes, and cataractogenesis.
    Tessier F; Obrenovich M; Monnier VM
    J Biol Chem; 1999 Jul; 274(30):20796-804. PubMed ID: 10409619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relative ability of glucose and ascorbate to glycate and crosslink lens proteins in vitro. off.
    Lee KW; Mossine V; Ortwerth BJ
    Exp Eye Res; 1998 Jul; 67(1):95-104. PubMed ID: 9702182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison between modifications of lens proteins resulted from glycation with methylglyoxal, glyoxal, ascorbic acid, and fructose.
    Argirova M; Breipohl W
    J Biochem Mol Toxicol; 2002; 16(3):140-5. PubMed ID: 12112714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triosidines: novel Maillard reaction products and cross-links from the reaction of triose sugars with lysine and arginine residues.
    Tessier FJ; Monnier VM; Sayre LM; Kornfield JA
    Biochem J; 2003 Feb; 369(Pt 3):705-19. PubMed ID: 12379150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-linking of proteins by Maillard processes: characterization and detection of lysine-arginine cross-links derived from glyoxal and methylglyoxal.
    Lederer MO; Klaiber RG
    Bioorg Med Chem; 1999 Nov; 7(11):2499-507. PubMed ID: 10632059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of autoxidative glycosylation: identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose.
    Wells-Knecht KJ; Zyzak DV; Litchfield JE; Thorpe SR; Baynes JW
    Biochemistry; 1995 Mar; 34(11):3702-9. PubMed ID: 7893666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous chemical and photochemical protein crosslinking induced by irradiation of eye lens proteins in the presence of ascorbate: the photosensitizing role of an UVA-visible-absorbing decomposition product of vitamin C.
    Avila F; Friguet B; Silva E
    Photochem Photobiol Sci; 2010 Oct; 9(10):1351-8. PubMed ID: 20734005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of a blue fluorophore from human eye lens crystallins: in vitro formation from Maillard reaction with ascorbate and ribose.
    Nagaraj RH; Monnier VM
    Biochim Biophys Acta; 1992 Mar; 1116(1):34-42. PubMed ID: 1540622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of alpha- and epsilon-amino groups in the glycation-mediated cross-linking of gammaB-crystallin. Study of three site-directed mutants.
    Zhao HR; Nagaraj RH; Abraham EC
    J Biol Chem; 1997 May; 272(22):14465-9. PubMed ID: 9162088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carnosine inhibits modifications and decreased molecular chaperone activity of lens alpha-crystallin induced by ribose and fructose 6-phosphate.
    Yan H; Harding JJ
    Mol Vis; 2006 Mar; 12():205-14. PubMed ID: 16604053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ascorbic acid glycation: the reactions of L-threose in lens tissue.
    Ortwerth BJ; Speaker JA; Prabhakaram M; Lopez MG; Li EY; Feather MS
    Exp Eye Res; 1994 Jun; 58(6):665-74. PubMed ID: 7925706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.