These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 9989363)

  • 1. Effects of method, duration, and sleep stage on rebounds from sleep deprivation in the rat.
    Rechtschaffen A; Bergmann BM; Gilliland MA; Bauer K
    Sleep; 1999 Feb; 22(1):11-31. PubMed ID: 9989363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavioral sleep-wake homeostasis and EEG delta power are decoupled by chronic sleep restriction in the rat.
    Stephenson R; Caron AM; Famina S
    Sleep; 2015 May; 38(5):685-97. PubMed ID: 25669184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sleep deprivation in the rat: XVI. Effects in a light-dark cycle.
    Tsai LL; Bergmann BM; Rechtschaffen A
    Sleep; 1992 Dec; 15(6):537-44. PubMed ID: 1475568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Significance of the zero sum principle for circadian, homeostatic and allostatic regulation of sleep-wake state in the rat.
    Stephenson R; Caron AM; Famina S
    Physiol Behav; 2016 Dec; 167():35-48. PubMed ID: 27594095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Period-amplitude analysis of rat electroencephalogram: effects of sleep deprivation and exercise.
    Mistlberger R; Bergmann B; Rechtschaffen A
    Sleep; 1987 Dec; 10(6):508-22. PubMed ID: 3432853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of chronic sleep deprivation on central cholinergic receptors in rat brain.
    Tsai LL; Bergmann BM; Perry BD; Rechtschaffen A
    Brain Res; 1994 Apr; 642(1-2):95-103. PubMed ID: 8032905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Total sleep deprivation in the rat transiently abolishes the delta amplitude response to darkness: implications for the mechanism of the "negative delta rebound".
    Feinberg I; Campbell IG
    J Neurophysiol; 1993 Dec; 70(6):2695-9. PubMed ID: 8120610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The homeostatic and circadian sleep recovery responses after total sleep deprivation in mice.
    Dispersyn G; Sauvet F; Gomez-Merino D; Ciret S; Drogou C; Leger D; Gallopin T; Chennaoui M
    J Sleep Res; 2017 Oct; 26(5):531-538. PubMed ID: 28425172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of chronic total sleep deprivation on central noradrenergic receptors in rat brain.
    Tsai LL; Bergmann BM; Perry BD; Rechtschaffen A
    Brain Res; 1993 Feb; 602(2):221-7. PubMed ID: 8448668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homeostasis of REM sleep after total and selective sleep deprivation in the rat.
    Ocampo-Garcés A; Molina E; Rodríguez A; Vivaldi EA
    J Neurophysiol; 2000 Nov; 84(5):2699-702. PubMed ID: 11068012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vascular resistance in the rat during baseline, chronic total sleep deprivation, and recovery from total sleep deprivation.
    Zenko CE; Bergmann BM; Rechtschaffen A
    Sleep; 2000 May; 23(3):341-6. PubMed ID: 10811378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circadian rhythms and sleep have additive effects on respiration in the rat.
    Stephenson R; Liao KS; Hamrahi H; Horner RL
    J Physiol; 2001 Oct; 536(Pt 1):225-35. PubMed ID: 11579171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced slow-wave activity within NREM sleep in the cortical and subcortical EEG of the cat after sleep deprivation.
    Lancel M; van Riezen H; Glatt A
    Sleep; 1992 Apr; 15(2):102-18. PubMed ID: 1579784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Waking electroencephalogram activity as a consequence of sleep and total sleep deprivation in the rat.
    Ugalde E; Corsi-Cabrera M; Juárez J; Ramos J; Arce C
    Sleep; 1994 Apr; 17(3):226-30. PubMed ID: 7939121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. REM sleep-dependent short-term and long-term hourglass processes in the ultradian organization and recovery of REM sleep in the rat.
    Ocampo-Garcés A; Bassi A; Brunetti E; Estrada J; Vivaldi EA
    Sleep; 2020 Aug; 43(8):. PubMed ID: 32052056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sleep deprivation in the pigeon using the Disk-Over-Water method.
    Newman SM; Paletz EM; Rattenborg NC; Obermeyer WH; Benca RM
    Physiol Behav; 2008 Jan; 93(1-2):50-8. PubMed ID: 17765274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of sleep deprivation on sleep and EEG power spectra in the rat.
    Borbély AA; Tobler I; Hanagasioglu M
    Behav Brain Res; 1984 Dec; 14(3):171-82. PubMed ID: 6525241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decreased REM sleep and altered circadian sleep regulation in mice lacking vasoactive intestinal polypeptide.
    Hu WP; Li JD; Colwell CS; Zhou QY
    Sleep; 2011 Jan; 34(1):49-56. PubMed ID: 21203371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An instrumental method for long-term continuous REM sleep deprivation of neonatal rats.
    Feng P; Vogel GW; Obermeyer W; Kinney GG
    Sleep; 2000 Mar; 23(2):175-83. PubMed ID: 10737334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sleep regulation in rats: effects of sleep deprivation, light, and circadian phase.
    Trachsel L; Tobler I; Borbély AA
    Am J Physiol; 1986 Dec; 251(6 Pt 2):R1037-44. PubMed ID: 3789191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.