These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 9989379)

  • 21. Effect of acrylodan conjugation and forced oxidation on the structural integrity, conformational stability, and binding activity of a glucose binding protein SM4 used in a prototype continuous glucose monitor.
    Hickey JM; Sahni N; Chaudhuri R; D'Souza A; Metters A; Joshi SB; Russell Middaugh C; Volkin DB
    Protein Sci; 2017 Mar; 26(3):527-535. PubMed ID: 27997712
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comparative study of electrochemically and fluorometrically addressed molecular reporter groups: effects of protein microenvironment.
    Trammell SA; Jhaveri SD; LaBrenz SR; Mauro JM
    Biosens Bioelectron; 2003 Dec; 19(4):373-82. PubMed ID: 14615096
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct, real-time measurement of rapid inorganic phosphate release using a novel fluorescent probe and its application to actomyosin subfragment 1 ATPase.
    Brune M; Hunter JL; Corrie JE; Webb MR
    Biochemistry; 1994 Jul; 33(27):8262-71. PubMed ID: 8031761
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A fluorescent derivative of the oligomycin-sensitivity conferring protein (acrylodan-OSCP). Evidence for polarity changes in the environment of CYS118 of OSCP upon binding to mitochondrial F1.
    Dupuis A; Duszynski J; Vignais PV
    Biochem Biophys Res Commun; 1987 Jan; 142(1):31-7. PubMed ID: 2880585
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Site-specific chemical modification of interleukin-1 beta by acrylodan at cysteine 8 and lysine 103.
    Yem AW; Epps DE; Mathews WR; Guido DM; Richard KA; Staite ND; Deibel MR
    J Biol Chem; 1992 Feb; 267(5):3122-8. PubMed ID: 1531337
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dual-labeled glucose binding protein for ratiometric measurements of glucose.
    Ge X; Tolosa L; Rao G
    Anal Chem; 2004 Mar; 76(5):1403-10. PubMed ID: 14987097
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Calcium-induced conformational change in cardiac troponin C studied by fluorescence probes attached to Cys-84.
    Dong WJ; Cheung HC
    Biochim Biophys Acta; 1996 Jul; 1295(2):139-46. PubMed ID: 8695639
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optical determination of glutamine using a genetically engineered protein.
    Dattelbaum JD; Lakowicz JR
    Anal Biochem; 2001 Apr; 291(1):89-95. PubMed ID: 11262160
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Trehalose influence on beta-lactoglobulin stability and hydration by time resolved fluorescence.
    D'Alfonso L; Collini M; Baldini G
    Eur J Biochem; 2003 Jun; 270(11):2497-504. PubMed ID: 12755705
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluorescence properties of acrylodan-labeled tropomyosin and tropomyosin-actin: evidence for myosin subfragment 1 induced changes in geometry between tropomyosin and actin.
    Lehrer SS; Ishii Y
    Biochemistry; 1988 Aug; 27(16):5899-906. PubMed ID: 3191099
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fatty acid sensor for low-cost lifetime-assisted ratiometric sensing using a fluorescent fatty acid binding protein.
    Bartolome A; Bardliving C; Rao G; Tolosa L
    Anal Biochem; 2005 Oct; 345(1):133-9. PubMed ID: 16137630
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photoacoustic analysis of proteins: volumetric signals and fluorescence quantum yields.
    Kurian E; Prendergast FG; Small JR
    Biophys J; 1997 Jul; 73(1):466-76. PubMed ID: 9199809
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering out motion: a surface disulfide bond alters the mobility of tryptophan 22 in cytochrome b5 as probed by time-resolved fluorescence and 1H NMR experiments.
    Storch EM; Grinstead JS; Campbell AP; Daggett V; Atkins WM
    Biochemistry; 1999 Apr; 38(16):5065-75. PubMed ID: 10213609
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intrinsically disordered structure of Bacillus pasteurii UreG as revealed by steady-state and time-resolved fluorescence spectroscopy.
    Neyroz P; Zambelli B; Ciurli S
    Biochemistry; 2006 Jul; 45(29):8918-30. PubMed ID: 16846235
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploration of the correlation between solvation dynamics and internal dynamics of a protein.
    Jha A; Ishii K; Udgaonkar JB; Tahara T; Krishnamoorthy G
    Biochemistry; 2011 Jan; 50(3):397-408. PubMed ID: 21141874
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational modeling of acrylodan-labeled cAMP dependent protein kinase catalytic subunit unfolding.
    Kuznetsov A; Kivi R; Järv J
    Comput Biol Chem; 2016 Apr; 61():197-201. PubMed ID: 26896699
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Different States of Acrylodan-Labeled 3'5'-Cyclic Adenosine Monophosphate Dependent Protein Kinase Catalytic Subunits in Denaturant Solutions.
    Kivi R; Järv J
    Protein J; 2016 Oct; 35(5):331-339. PubMed ID: 27601174
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Linear dichroism of acrylodan-labeled tropomyosin and myosin subfragment 1 bound to actin in myofibrils.
    Szczesna D; Lehrer SS
    Biophys J; 1992 Apr; 61(4):993-1000. PubMed ID: 1581508
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of allosteric signal transduction mechanisms in an engineered fluorescent maltose biosensor.
    Dattelbaum JD; Looger LL; Benson DE; Sali KM; Thompson RB; Hellinga HW
    Protein Sci; 2005 Feb; 14(2):284-91. PubMed ID: 15659363
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of pH on the glucose response of the glucose-galactose binding protein L255C labeled with Acrylodan.
    El-Sayed MM; Brown SR; Mupparapu K; Tolosa L
    Int J Biol Macromol; 2016 May; 86():282-7. PubMed ID: 26812111
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.