BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 9989454)

  • 1. Oxidative metabolism, apoptosis and perinatal brain injury.
    Taylor DL; Edwards AD; Mehmet H
    Brain Pathol; 1999 Jan; 9(1):93-117. PubMed ID: 9989454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain oxidative damage in murine models of neonatal hypoxia/ischemia and reoxygenation.
    Torres-Cuevas I; Corral-Debrinski M; Gressens P
    Free Radic Biol Med; 2019 Oct; 142():3-15. PubMed ID: 31226400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative stress in brain ischemia.
    Love S
    Brain Pathol; 1999 Jan; 9(1):119-31. PubMed ID: 9989455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial mechanisms of cell death and neuroprotection in pediatric ischemic and traumatic brain injury.
    Robertson CL; Scafidi S; McKenna MC; Fiskum G
    Exp Neurol; 2009 Aug; 218(2):371-80. PubMed ID: 19427308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial dysfunction in perinatal asphyxia: role in pathogenesis and potential therapeutic interventions.
    Samaiya PK; Krishnamurthy S; Kumar A
    Mol Cell Biochem; 2021 Dec; 476(12):4421-4434. PubMed ID: 34472002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Oxidative stress in perinatal asphyxia and hypoxic-ischaemic encephalopathy].
    Nuñez A; Benavente I; Blanco D; Boix H; Cabañas F; Chaffanel M; Fernández-Colomer B; Fernández-Lorenzo JR; Loureiro B; Moral MT; Pavón A; Tofé I; Valverde E; Vento M;
    An Pediatr (Engl Ed); 2018 Apr; 88(4):228.e1-228.e9. PubMed ID: 28648366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catecholamine-induced oligodendrocyte cell death in culture is developmentally regulated and involves free radical generation and differential activation of caspase-3.
    Khorchid A; Fragoso G; Shore G; Almazan G
    Glia; 2002 Dec; 40(3):283-99. PubMed ID: 12420309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CFTR prevents neuronal apoptosis following cerebral ischemia reperfusion via regulating mitochondrial oxidative stress.
    Zhang YP; Zhang Y; Xiao ZB; Zhang YB; Zhang J; Li ZQ; Zhu YB
    J Mol Med (Berl); 2018 Jul; 96(7):611-620. PubMed ID: 29761302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial participation in ischemic and traumatic neural cell death.
    Fiskum G
    J Neurotrauma; 2000 Oct; 17(10):843-55. PubMed ID: 11063052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Apoptosis and necrosis in the newborn piglet brain following transient cerebral hypoxia-ischaemia.
    Yue X; Mehmet H; Penrice J; Cooper C; Cady E; Wyatt JS; Reynolds EO; Edwards AD; Squier MV
    Neuropathol Appl Neurobiol; 1997 Feb; 23(1):16-25. PubMed ID: 9061686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic resonance and near infrared spectroscopy for investigation of perinatal hypoxic-ischaemic brain injury.
    Wyatt JS; Edwards AD; Azzopardi D; Reynolds EO
    Arch Dis Child; 1989 Jul; 64(7 Spec No):953-63. PubMed ID: 2673061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The oxygen free radicals originating from mitochondrial complex I contribute to oxidative brain injury following hypoxia-ischemia in neonatal mice.
    Niatsetskaya ZV; Sosunov SA; Matsiukevich D; Utkina-Sosunova IV; Ratner VI; Starkov AA; Ten VS
    J Neurosci; 2012 Feb; 32(9):3235-44. PubMed ID: 22378894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly(ADP ribose) polymerase cleavage precedes neuronal death in the hippocampus and cerebellum following injury to the developing rat forebrain.
    Joashi UC; Greenwood K; Taylor DL; Kozma M; Mazarakis ND; Edwards AD; Mehmet H
    Eur J Neurosci; 1999 Jan; 11(1):91-100. PubMed ID: 9987014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noninvasive assessment of cerebral oxidative metabolism in the human newborn.
    Wyatt JS
    J R Coll Physicians Lond; 1994; 28(2):126-32. PubMed ID: 8006864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apoptosis in the brains of infants suffering intrauterine cerebral injury.
    Edwards AD; Yue X; Cox P; Hope PL; Azzopardi DV; Squier MV; Mehmet H
    Pediatr Res; 1997 Nov; 42(5):684-9. PubMed ID: 9357944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial impairment in the developing brain after hypoxia-ischemia.
    Hagberg H
    J Bioenerg Biomembr; 2004 Aug; 36(4):369-73. PubMed ID: 15377874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury.
    Xie C; Ginet V; Sun Y; Koike M; Zhou K; Li T; Li H; Li Q; Wang X; Uchiyama Y; Truttmann AC; Kroemer G; Puyal J; Blomgren K; Zhu C
    Autophagy; 2016; 12(2):410-23. PubMed ID: 26727396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondria, Oxidative Stress and the Kynurenine System, with a Focus on Ageing and Neuroprotection.
    Sas K; Szabó E; Vécsei L
    Molecules; 2018 Jan; 23(1):. PubMed ID: 29342113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vulnerability to a Metabolic Challenge Following Perinatal Asphyxia Evaluated by Organotypic Cultures: Neonatal Nicotinamide Treatment.
    Perez-Lobos R; Lespay-Rebolledo C; Tapia-Bustos A; Palacios E; Vío V; Bustamante D; Morales P; Herrera-Marschitz M
    Neurotox Res; 2017 Oct; 32(3):426-443. PubMed ID: 28631256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Apoptosis in perinatal hypoxic-ischaemic cerebral damage.
    Edwards AD; Mehmet H
    Neuropathol Appl Neurobiol; 1996 Dec; 22(6):494-8. PubMed ID: 9004235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.