These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 9989609)
1. Programming of enzyme specificity by substrate mimetics: investigations on the Glu-specific V8 protease reveals a novel general principle of biocatalysis. Wehofsky N; Bordusa F FEBS Lett; 1999 Jan; 443(2):220-4. PubMed ID: 9989609 [TBL] [Abstract][Full Text] [Related]
2. Engineering of substrate mimetics as novel-type substrates for glutamic acid-specific endopeptidases: design, synthesis, and application. Wehofsky N; Wissmann J; Alisch M; Bordusa F Biochim Biophys Acta; 2000 Jun; 1479(1-2):114-22. PubMed ID: 11004534 [TBL] [Abstract][Full Text] [Related]
3. Protease-catalyzed fragment condensation via substrate mimetic strategy: a useful combination of solid-phase peptide synthesis with enzymatic methods. Cerovský V; Bordusa F J Pept Res; 2000 Apr; 55(4):325-9. PubMed ID: 10798378 [TBL] [Abstract][Full Text] [Related]
4. Substrate mimetics in protease catalysis: characteristics, kinetics, and synthetic utility. Bordusa F Curr Protein Pept Sci; 2002 Apr; 3(2):159-80. PubMed ID: 12188901 [TBL] [Abstract][Full Text] [Related]
5. Synthesising protease-stable isopeptides by proteases: an efficient biocatalytic approach on the basis of a new type of substrate mimetics. Wehofsky N; Alisch M; Bordusa F Chem Commun (Camb); 2001 Sep; (17):1602-3. PubMed ID: 12240402 [TBL] [Abstract][Full Text] [Related]
6. Nonconventional amide bond formation catalysis: programming enzyme specificity with substrate mimetics. Bordusa F Braz J Med Biol Res; 2000 May; 33(5):469-85. PubMed ID: 10775878 [TBL] [Abstract][Full Text] [Related]
7. Subsite mapping of an acidic amino acid-specific endopeptidase from Streptomyces griseus, GluSGP, and protease V8. Nagata K; Yoshida N; Ogata F; Araki M; Noda K J Biochem; 1991 Dec; 110(6):859-62. PubMed ID: 1794975 [TBL] [Abstract][Full Text] [Related]
8. Fragmentation of proteins by S. aureus strain V8 protease. Ammonium bicarbonate strongly inhibits the enzyme but does not improve the selectivity for glutamic acid. Sørensen SB; Sørensen TL; Breddam K FEBS Lett; 1991 Dec; 294(3):195-7. PubMed ID: 1684551 [TBL] [Abstract][Full Text] [Related]
9. Protease-catalyzed hydrolysis of substrate mimetics (inverse substrates): A new approach reveals a new mechanism. Thormann M; Thust S; Hofmann HJ; Bordusa F Biochemistry; 1999 May; 38(19):6056-62. PubMed ID: 10320331 [TBL] [Abstract][Full Text] [Related]
10. Structural and functional characterization of SplA, an exclusively specific protease of Staphylococcus aureus. Stec-Niemczyk J; Pustelny K; Kisielewska M; Bista M; Boulware KT; Stennicke HR; Thogersen IB; Daugherty PS; Enghild JJ; Baczynski K; Popowicz GM; Dubin A; Potempa J; Dubin G Biochem J; 2009 May; 419(3):555-64. PubMed ID: 19175361 [TBL] [Abstract][Full Text] [Related]
11. Proteosynthetic activity of immobilized Staphylococcus aureus V8 protease: application in the semisynthesis of molecular variants of alpha-globin. Sahni G; Mallia AK; Acharya AS Anal Biochem; 1991 Mar; 193(2):178-85. PubMed ID: 1872464 [TBL] [Abstract][Full Text] [Related]
12. Cleavage by protease from Staphylococcus aureus V8: an improvement in the sequence analysis of human hemoglobin variants. Vasseur C; Galacteros F; Groff P; Wajcman H J Biochem Biophys Methods; 1991 Apr; 22(3):195-205. PubMed ID: 1865052 [TBL] [Abstract][Full Text] [Related]
13. An enigmatic peptide ligation reaction: protease-catalyzed oligomerization of a native protein segment in neat aqueous solution. Kumaran S; Datta D; Roy RP Protein Sci; 2000 Apr; 9(4):734-41. PubMed ID: 10794415 [TBL] [Abstract][Full Text] [Related]
14. Substrate preferences of glutamic-acid-specific endopeptidases assessed by synthetic peptide substrates based on intramolecular fluorescence quenching. Breddam K; Meldal M Eur J Biochem; 1992 May; 206(1):103-7. PubMed ID: 1587264 [TBL] [Abstract][Full Text] [Related]
15. On the rational design of substrate mimetics: The function of docking approaches for the prediction of protease specificities. Günther R; Elsner C; Schmidt S; Hofmann HJ; Bordusa F Org Biomol Chem; 2004 May; 2(10):1442-6. PubMed ID: 15136799 [TBL] [Abstract][Full Text] [Related]
16. Synthetic potential of Staphylococcus aureus V8-protease: an approach toward semisynthesis of covalent analogs of alpha-chain of hemoglobin S. Seetharam R; Acharya AS J Cell Biochem; 1986; 30(1):87-99. PubMed ID: 3514639 [TBL] [Abstract][Full Text] [Related]
17. The structure of a universally employed enzyme: V8 protease from Staphylococcus aureus. Prasad L; Leduc Y; Hayakawa K; Delbaere LT Acta Crystallogr D Biol Crystallogr; 2004 Feb; 60(Pt 2):256-9. PubMed ID: 14747701 [TBL] [Abstract][Full Text] [Related]
18. Staphylococcus aureus V8-protease catalyzed segment exchange reaction of alpha-chain of hemoglobin S: a semisynthetic approach for the preparation of variants of alpha-chain. Acharya AS; Cho YJ; Iyer KS Prog Clin Biol Res; 1987; 240():3-19. PubMed ID: 3303059 [TBL] [Abstract][Full Text] [Related]
19. Kinetics of reactions of the Actinomadura R39 DD-peptidase with specific substrates. Adediran SA; Kumar I; Nagarajan R; Sauvage E; Pratt RF Biochemistry; 2011 Jan; 50(3):376-87. PubMed ID: 21182324 [TBL] [Abstract][Full Text] [Related]
20. Reverse proteolysis promoted by in situ generated peptide ester fragments. Wehofsky N; Koglin N; Thust S; Bordusa F J Am Chem Soc; 2003 May; 125(20):6126-33. PubMed ID: 12785843 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]