These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 9989928)

  • 1. Allosteric regulation of type I hexokinase: A site-directed mutational study indicating location of the functional glucose 6-phosphate binding site in the N-terminal half of the enzyme.
    Sebastian S; Wilson JE; Mulichak A; Garavito RM
    Arch Biochem Biophys; 1999 Feb; 362(2):203-10. PubMed ID: 9989928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Residues putatively involved in binding of ATP and glucose 6-phosphate to a mammalian hexokinase: site-directed mutation at analogous positions in the N- and C-terminal halves of the type I isozyme.
    Baijal M; Wilson JE
    Arch Biochem Biophys; 1995 Aug; 321(2):413-20. PubMed ID: 7646067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural determinants for the intracellular localization of the isozymes of mammalian hexokinase: intracellular localization of fusion constructs incorporating structural elements from the hexokinase isozymes and the green fluorescent protein.
    Sui D; Wilson JE
    Arch Biochem Biophys; 1997 Sep; 345(1):111-25. PubMed ID: 9281318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional organization of mammalian hexokinases: characterization of the rat type III isozyme and its chimeric forms, constructed with the N- and C-terminal halves of the type I and type II isozymes.
    Tsai HJ; Wilson JE
    Arch Biochem Biophys; 1997 Feb; 338(2):183-92. PubMed ID: 9028870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional organization and evolution of mammalian hexokinases: mutations that caused the loss of catalytic activity in N-terminal halves of type I and type III isozymes.
    Tsai HJ
    Arch Biochem Biophys; 1999 Sep; 369(1):149-56. PubMed ID: 10462451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional interactions between the noncovalently associated N- and C-terminal halves of mammalian Type I hexokinase.
    Sui D; Wilson JE
    Arch Biochem Biophys; 2002 May; 401(1):21-8. PubMed ID: 12054483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional organization of mammalian hexokinases: characterization of chimeric hexokinases constructed from the N- and C-terminal domains of the rat type I and type II isozymes.
    Tsai HJ; Wilson JE
    Arch Biochem Biophys; 1995 Jan; 316(1):206-14. PubMed ID: 7840618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of hexokinase I: crystal structure of recombinant human brain hexokinase complexed with glucose and phosphate.
    Aleshin AE; Zeng C; Bartunik HD; Fromm HJ; Honzatko RB
    J Mol Biol; 1998 Sep; 282(2):345-57. PubMed ID: 9735292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional organization of mammalian hexokinases: both N- and C-terminal halves of the rat type II isozyme possess catalytic sites.
    Tsai HJ; Wilson JE
    Arch Biochem Biophys; 1996 May; 329(1):17-23. PubMed ID: 8619630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP-binding site of human brain hexokinase as studied by molecular modeling and site-directed mutagenesis.
    Zeng C; Aleshin AE; Hardie JB; Harrison RW; Fromm HJ
    Biochemistry; 1996 Oct; 35(40):13157-64. PubMed ID: 8855953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and regulatory properties of HK I(+), a modified form of the type I isozyme of mammalian hexokinase in which interactions between the N- and C-terminal halves have been disrupted.
    Hashimoto M; Wilson JE
    Arch Biochem Biophys; 2002 Mar; 399(1):109-15. PubMed ID: 11883910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding of nucleoside triphosphates, inorganic phosphate, and other polyanionic ligands to the N-terminal region of rat brain hexokinase: relationship to regulation of hexokinase activity by antagonistic interactions between glucose 6-phosphate and inorganic phosphate.
    White TK; Wilson JE
    Arch Biochem Biophys; 1990 Feb; 277(1):26-34. PubMed ID: 2306121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonaggregating mutant of recombinant human hexokinase I exhibits wild-type kinetics and rod-like conformations in solution.
    Aleshin AE; Malfois M; Liu X; Kim CS; Fromm HJ; Honzatko RB; Koch MH; Svergun DI
    Biochemistry; 1999 Jun; 38(26):8359-66. PubMed ID: 10387081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane potential-dependent conformational changes in mitochondrially bound hexokinase of brain.
    Hashimoto M; Wilson JE
    Arch Biochem Biophys; 2000 Dec; 384(1):163-73. PubMed ID: 11147827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional characteristics of hexokinase bound to the type a and type B sites of bovine brain mitochondria.
    de Cerqueira Cesar M; Wilson JE
    Arch Biochem Biophys; 2002 Jan; 397(1):106-12. PubMed ID: 11747316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structures of mutant monomeric hexokinase I reveal multiple ADP binding sites and conformational changes relevant to allosteric regulation.
    Aleshin AE; Kirby C; Liu X; Bourenkov GP; Bartunik HD; Fromm HJ; Honzatko RB
    J Mol Biol; 2000 Mar; 296(4):1001-15. PubMed ID: 10686099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional consequences of mutation of highly conserved serine residues, found at equivalent positions in the N- and C-terminal domains of mammalian hexokinases.
    Baijal M; Wilson JE
    Arch Biochem Biophys; 1992 Oct; 298(1):271-8. PubMed ID: 1524437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structure of mammalian hexokinase-1.
    Mulichak AM; Wilson JE; Padmanabhan K; Garavito RM
    Nat Struct Biol; 1998 Jul; 5(7):555-60. PubMed ID: 9665168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a phosphate regulatory site and a low affinity binding site for glucose 6-phosphate in the N-terminal half of human brain hexokinase.
    Fang TY; Alechina O; Aleshin AE; Fromm HJ; Honzatko RB
    J Biol Chem; 1998 Jul; 273(31):19548-53. PubMed ID: 9677378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate-assisted movement of the catalytic Lys 215 during domain closure: site-directed mutagenesis studies of human 3-phosphoglycerate kinase.
    Flachner B; Varga A; Szabó J; Barna L; Hajdú I; Gyimesi G; Závodszky P; Vas M
    Biochemistry; 2005 Dec; 44(51):16853-65. PubMed ID: 16363799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.