These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 999005)

  • 1. Determination of arsenic, tungsten, and antimony in natural waters by neutron activation and inorganic ion exchange.
    Gladney ES; Owens JW
    Anal Chem; 1976 Dec; 48(14):2220-2. PubMed ID: 999005
    [No Abstract]   [Full Text] [Related]  

  • 2. Determination of arsenic species in natural waters.
    Andreae MO
    Anal Chem; 1977 May; 49(6):820-3. PubMed ID: 855924
    [No Abstract]   [Full Text] [Related]  

  • 3. Automated atomic absorption determination of arsenic, antimony, and selenium in natural waters.
    Goulden PD; Brooksbank P
    Anal Chem; 1974 Sep; 46(11):1431-6. PubMed ID: 4412134
    [No Abstract]   [Full Text] [Related]  

  • 4. Hydride generation for the direct determination of trace and ultra-trace level of arsenic and antimony in waters using derivative atomic absorption spectrometry.
    Sun HW; Ha J; Sun JM; Zhang DQ; Yang LL
    Anal Bioanal Chem; 2002 Oct; 374(3):526-9. PubMed ID: 12373404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The determination of traces of arsenic in water by arsine generation and radiometric analysis.
    Gian HF; Tong SL
    Anal Chim Acta; 1977 Mar; 89(1):151-6. PubMed ID: 842862
    [No Abstract]   [Full Text] [Related]  

  • 6. Microtrace metalloids speciation in lakes water samples (Poland).
    Niedzielski P
    Environ Monit Assess; 2006 Jul; 118(1-3):231-46. PubMed ID: 16897544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of arsenic and antimony in environmental samples using gas chromatography with a microwave emission spectrometric system.
    Talmi Y; Norvell VE
    Anal Chem; 1975 Aug; 47(9):1510-16. PubMed ID: 1155774
    [No Abstract]   [Full Text] [Related]  

  • 8. Simultaneous determination of arsenic and antimony species in environmental samples using bis(trifluoroethyl)dithiocarbamate chelation and supercritical fluid chromatography.
    Laintz KE; Shieh GM; Wai CM
    J Chromatogr Sci; 1992 Apr; 30(4):120-3. PubMed ID: 1400861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of sub-microgram per liter quantities of arsenic in water by arsine generation followed by graphite furnace atomic absorption spectrometry.
    Shaikh AU; Tallman DE
    Anal Chem; 1977 Jul; 49(8):1093-6. PubMed ID: 883650
    [No Abstract]   [Full Text] [Related]  

  • 10. Use of carbon nanotubes and electrothermal atomic absorption spectrometry for the speciation of very low amounts of arsenic and antimony in waters.
    López-García I; Rivas RE; Hernández-Córdoba M
    Talanta; 2011 Oct; 86():52-7. PubMed ID: 22063510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Determination of arsenic in soil and cistern waters].
    Costantini S; Giordano R; Ravagnan P
    Ann Ist Super Sanita; 1980; 16(2):287-94. PubMed ID: 7235437
    [No Abstract]   [Full Text] [Related]  

  • 12. The toluene extraction of some elements as iodides from sulphuric acid-potassium iodide media. Application to neutron activation analysis. II. Determination of arsenic and antimony in biological materials at submicrogram levels.
    Byrne AR
    Anal Chim Acta; 1972 Mar; 59(1):91-9. PubMed ID: 5013774
    [No Abstract]   [Full Text] [Related]  

  • 13. Antimony, arsenic and mercury in the aquatic environment and fish in a large antimony mining area in Hunan, China.
    Fu Z; Wu F; Amarasiriwardena D; Mo C; Liu B; Zhu J; Deng Q; Liao H
    Sci Total Environ; 2010 Jul; 408(16):3403-10. PubMed ID: 20452645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antimony, Arsenic and Chromium Speciation Studies in Biała Przemsza River (Upper Silesia, Poland) Water by HPLC-ICP-MS.
    Jabłońska-Czapla M
    Int J Environ Res Public Health; 2015 Apr; 12(5):4739-57. PubMed ID: 25941843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variability in inorganic As, Sb and Tl species concentrations in waters and bottom sediments of the Kłodnica River (Poland).
    Michalski R; Szopa S
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Aug; 52(10):946-955. PubMed ID: 28575584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous determination of arsenic, antimony, cadmium, chromium, copper, and selenium in environmental material by radiochemical neutron activation analysis.
    Gallorini M; Greenberg RR; Gills TE
    Anal Chem; 1978 Sep; 50(11):1479-81. PubMed ID: 707809
    [No Abstract]   [Full Text] [Related]  

  • 17. Arsenic and drinking water contamination.
    Gebel TW
    Science; 1999 Mar; 283(5407):1458-9. PubMed ID: 10206874
    [No Abstract]   [Full Text] [Related]  

  • 18. Aspects of accuracy and precision in the determination of As and Sb in biological materials by neutron activation analysis.
    Woittiez JR; Geusebroek M
    Biol Trace Elem Res; 1990; 26-27():561-9. PubMed ID: 1704763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ENAA studies of pollution in anoxic Black Sea sediments.
    Duliu OG; Cristache C; Oaie G; Culicov OA; Frontasyeva MV; Toma M
    Mar Pollut Bull; 2009 Jun; 58(6):827-31. PubMed ID: 19261305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trophic transfer of arsenic and antimony in a freshwater ecosystem: a field study.
    Culioli JL; Fouquoire A; Calendini S; Mori C; Orsini A
    Aquat Toxicol; 2009 Oct; 94(4):286-93. PubMed ID: 19695721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.