These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 9990053)
1. Triplet repeats form secondary structures that escape DNA repair in yeast. Moore H; Greenwell PW; Liu CP; Arnheim N; Petes TD Proc Natl Acad Sci U S A; 1999 Feb; 96(4):1504-9. PubMed ID: 9990053 [TBL] [Abstract][Full Text] [Related]
2. Seven-base-pair inverted repeats in DNA form stable hairpins in vivo in Saccharomyces cerevisiae. Nag DK; Petes TD Genetics; 1991 Nov; 129(3):669-73. PubMed ID: 1752412 [TBL] [Abstract][Full Text] [Related]
3. Palindromic sequences in heteroduplex DNA inhibit mismatch repair in yeast. Nag DK; White MA; Petes TD Nature; 1989 Jul; 340(6231):318-20. PubMed ID: 2546083 [TBL] [Abstract][Full Text] [Related]
5. Cytosine deamination and base excision repair cause R-loop-induced CAG repeat fragility and instability in Su XA; Freudenreich CH Proc Natl Acad Sci U S A; 2017 Oct; 114(40):E8392-E8401. PubMed ID: 28923949 [TBL] [Abstract][Full Text] [Related]
6. Trinucleotide repeats associated with human disease. Mitas M Nucleic Acids Res; 1997 Jun; 25(12):2245-54. PubMed ID: 9171073 [TBL] [Abstract][Full Text] [Related]
7. Double-strand break repair can lead to high frequencies of deletions within short CAG/CTG trinucleotide repeats. Richard GF; Dujon B; Haber JE Mol Gen Genet; 1999 Jun; 261(4-5):871-82. PubMed ID: 10394925 [TBL] [Abstract][Full Text] [Related]
8. Analysis of strand slippage in DNA polymerase expansions of CAG/CTG triplet repeats associated with neurodegenerative disease. Petruska J; Hartenstine MJ; Goodman MF J Biol Chem; 1998 Feb; 273(9):5204-10. PubMed ID: 9478975 [TBL] [Abstract][Full Text] [Related]
9. Meiotic instability of CAG repeat tracts occurs by double-strand break repair in yeast. Jankowski C; Nasar F; Nag DK Proc Natl Acad Sci U S A; 2000 Feb; 97(5):2134-9. PubMed ID: 10681451 [TBL] [Abstract][Full Text] [Related]
10. Triplet repeat DNA structures and human genetic disease: dynamic mutations from dynamic DNA. Sinden RR; Potaman VN; Oussatcheva EA; Pearson CE; Lyubchenko YL; Shlyakhtenko LS J Biosci; 2002 Feb; 27(1 Suppl 1):53-65. PubMed ID: 11927777 [TBL] [Abstract][Full Text] [Related]
11. A 140-bp-long palindromic sequence induces double-strand breaks during meiosis in the yeast Saccharomyces cerevisiae. Nag DK; Kurst A Genetics; 1997 Jul; 146(3):835-47. PubMed ID: 9215890 [TBL] [Abstract][Full Text] [Related]
12. Alternative structures in duplex DNA formed within the trinucleotide repeats of the myotonic dystrophy and fragile X loci. Pearson CE; Sinden RR Biochemistry; 1996 Apr; 35(15):5041-53. PubMed ID: 8664297 [TBL] [Abstract][Full Text] [Related]
14. DNA CTG triplet repeats involved in dynamic mutations of neurologically related gene sequences form stable duplexes. Smith GK; Jie J; Fox GE; Gao X Nucleic Acids Res; 1995 Nov; 23(21):4303-11. PubMed ID: 7501450 [TBL] [Abstract][Full Text] [Related]
15. Instability of CAG and CTG trinucleotide repeats in Saccharomyces cerevisiae. Miret JJ; Pessoa-Brandão L; Lahue RS Mol Cell Biol; 1997 Jun; 17(6):3382-7. PubMed ID: 9154837 [TBL] [Abstract][Full Text] [Related]
16. The effects of trinucleotide repeats found in human inherited disorders on palindrome inviability in Escherichia coli suggest hairpin folding preferences in vivo. Darlow JM; Leach DR Genetics; 1995 Nov; 141(3):825-32. PubMed ID: 8582629 [TBL] [Abstract][Full Text] [Related]