These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 9990081)

  • 21. Human cortical areas underlying the perception of optic flow: brain imaging studies.
    Greenlee MW
    Int Rev Neurobiol; 2000; 44():269-92. PubMed ID: 10605650
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modulation of sensory suppression: implications for receptive field sizes in the human visual cortex.
    Kastner S; De Weerd P; Pinsk MA; Elizondo MI; Desimone R; Ungerleider LG
    J Neurophysiol; 2001 Sep; 86(3):1398-411. PubMed ID: 11535686
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Top-down enhancement and suppression of activity in category-selective extrastriate cortex from an act of reflective attention.
    Johnson MR; Johnson MK
    J Cogn Neurosci; 2009 Dec; 21(12):2320-7. PubMed ID: 19199413
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Attention spotlight in V1-based cortico-cortical interactions in human visual hierarchy.
    Zhang Y; Zhang X; Lu X; Chen N
    Sci Rep; 2024 Jun; 14(1):13140. PubMed ID: 38849423
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Attentional load modulates responses of human primary visual cortex to invisible stimuli.
    Bahrami B; Lavie N; Rees G
    Curr Biol; 2007 Mar; 17(6):509-13. PubMed ID: 17346967
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Object Selection by Automatic Spreading of Top-Down Attentional Signals in V1.
    Ekman M; Roelfsema PR; de Lange FP
    J Neurosci; 2020 Nov; 40(48):9250-9259. PubMed ID: 33087475
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Activation patterns in visual cortex reveal receptive field size-dependent attentional modulation.
    Rijpkema M; van Aalderen SI; Schwarzbach JV; Verstraten FA
    Brain Res; 2008 Jan; 1189():90-6. PubMed ID: 18062939
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Attentional modulations related to spatial gating but not to allocation of limited resources in primate V1.
    Chen Y; Seidemann E
    Neuron; 2012 May; 74(3):557-66. PubMed ID: 22578506
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Less is more: expectation sharpens representations in the primary visual cortex.
    Kok P; Jehee JF; de Lange FP
    Neuron; 2012 Jul; 75(2):265-70. PubMed ID: 22841311
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synaptic Correlates of Low-Level Perception in V1.
    Gerard-Mercier F; Carelli PV; Pananceau M; Troncoso XG; Frégnac Y
    J Neurosci; 2016 Apr; 36(14):3925-42. PubMed ID: 27053201
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relative precision of top-down attentional modulations is lower in early visual cortex compared to mid- and high-level visual areas.
    Park S; Serences JT
    J Neurophysiol; 2022 Feb; 127(2):504-518. PubMed ID: 35020526
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Attention to surfaces modulates motion processing in extrastriate area MT.
    Wannig A; Rodríguez V; Freiwald WA
    Neuron; 2007 May; 54(4):639-51. PubMed ID: 17521575
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Visuotopic cortical connectivity underlying attention revealed with white-matter tractography.
    Greenberg AS; Verstynen T; Chiu YC; Yantis S; Schneider W; Behrmann M
    J Neurosci; 2012 Feb; 32(8):2773-82. PubMed ID: 22357860
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anticipatory and stimulus-evoked blood oxygenation level-dependent modulations related to spatial attention reflect a common additive signal.
    Sylvester CM; Shulman GL; Jack AI; Corbetta M
    J Neurosci; 2009 Aug; 29(34):10671-82. PubMed ID: 19710319
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cortical and Subcortical Coordination of Visual Spatial Attention Revealed by Simultaneous EEG-fMRI Recording.
    Green JJ; Boehler CN; Roberts KC; Chen LC; Krebs RM; Song AW; Woldorff MG
    J Neurosci; 2017 Aug; 37(33):7803-7810. PubMed ID: 28698387
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatial attention improves the quality of population codes in human visual cortex.
    Saproo S; Serences JT
    J Neurophysiol; 2010 Aug; 104(2):885-95. PubMed ID: 20484525
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The retinotopy of visual spatial attention.
    Tootell RB; Hadjikhani N; Hall EK; Marrett S; Vanduffel W; Vaughan JT; Dale AM
    Neuron; 1998 Dec; 21(6):1409-22. PubMed ID: 9883733
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Attentional integration between anatomically distinct stimulus representations in early visual cortex.
    Haynes JD; Tregellas J; Rees G
    Proc Natl Acad Sci U S A; 2005 Oct; 102(41):14925-30. PubMed ID: 16192359
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Attention modulates neuronal correlates of interhemispheric integration and global motion perception.
    Akin B; Ozdem C; Eroglu S; Keskin DT; Fang F; Doerschner K; Kersten D; Boyaci H
    J Vis; 2014 Oct; 14(12):. PubMed ID: 25349270
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Popout modulates focal attention in the primary visual cortex.
    Hopf JM; Noesselt T; Tempelmann C; Braun J; Schoenfeld MA; Heinze HJ
    Neuroimage; 2004 Jun; 22(2):574-82. PubMed ID: 15193585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.