These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 9990463)

  • 1. Recent Developments and Future Perspectives of Purine Derivatives as a Promising Scaffold in Drug Discovery.
    Rana N; Grover P; Singh H
    Curr Top Med Chem; 2024; 24(6):541-579. PubMed ID: 38288806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical Discovery, Intracellular Evaluation, and Crystallographic Characterization of Synthetic and Natural Product Adenosine 3',5'-Cyclic Monophosphate-Dependent Protein Kinase A (PKA) Inhibitors.
    Wilson BAP; Li N; Martinez Fiesco JA; Dalilian M; Wang D; Smith EA; Wamiru A; Shah R; Goncharova EI; Beutler JA; Grkovic T; Zhang P; O'Keefe BR
    ACS Pharmacol Transl Sci; 2023 Apr; 6(4):633-650. PubMed ID: 37082750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging approaches to CDK inhibitor development, a structural perspective.
    Hope I; Endicott JA; Watt JE
    RSC Chem Biol; 2023 Feb; 4(2):146-164. PubMed ID: 36794018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of High-Throughput Methyltransferase Assays for the Discovery of Small Molecule Inhibitors.
    Dong G; Yasgar A; Peterson DL; Zakharov A; Talley D; Cheng KC; Jadhav A; Simeonov A; Huang R
    ACS Comb Sci; 2020 Aug; 22(8):422-432. PubMed ID: 32525297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in the Conformational Energy Landscape of CDK1 and CDK2 Suggest a Mechanism for Achieving Selective CDK Inhibition.
    Wood DJ; Korolchuk S; Tatum NJ; Wang LZ; Endicott JA; Noble MEM; Martin MP
    Cell Chem Biol; 2019 Jan; 26(1):121-130.e5. PubMed ID: 30472117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A triple exon-skipping luciferase reporter assay identifies a new CLK inhibitor pharmacophore.
    Shi Y; Park J; Lagisetti C; Zhou W; Sambucetti LC; Webb TR
    Bioorg Med Chem Lett; 2017 Feb; 27(3):406-412. PubMed ID: 28049589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CDK1 differentially regulates G-overhang generation at leading- and lagging-strand telomeres in telomerase-negative cells in G2 phase.
    Dai X; Huang C; Chai W
    Cell Cycle; 2012 Aug; 11(16):3079-86. PubMed ID: 22871736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of a DNA damage checkpoint pathway in ionizing radiation-induced glioblastoma cell migration and invasion.
    Vanan I; Dong Z; Tosti E; Warshaw G; Symons M; Ruggieri R
    Cell Mol Neurobiol; 2012 Oct; 32(7):1199-208. PubMed ID: 22552889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Androgen receptor serine 81 phosphorylation mediates chromatin binding and transcriptional activation.
    Chen S; Gulla S; Cai C; Balk SP
    J Biol Chem; 2012 Mar; 287(11):8571-83. PubMed ID: 22275373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CDK1-dependent phosphorylation of EZH2 suppresses methylation of H3K27 and promotes osteogenic differentiation of human mesenchymal stem cells.
    Wei Y; Chen YH; Li LY; Lang J; Yeh SP; Shi B; Yang CC; Yang JY; Lin CY; Lai CC; Hung MC
    Nat Cell Biol; 2011 Jan; 13(1):87-94. PubMed ID: 21131960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic regulation of the PR-Set7 histone methyltransferase is required for normal cell cycle progression.
    Wu S; Wang W; Kong X; Congdon LM; Yokomori K; Kirschner MW; Rice JC
    Genes Dev; 2010 Nov; 24(22):2531-42. PubMed ID: 20966048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global changes in and characterization of specific sites of phosphorylation in mouse and human histone H1 Isoforms upon CDK inhibitor treatment using mass spectrometry.
    Deterding LJ; Bunger MK; Banks GC; Tomer KB; Archer TK
    J Proteome Res; 2008 Jun; 7(6):2368-79. PubMed ID: 18416567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of cylin-dependent kinase 1 inhibitors of a new chemical type by structure-based design and database searching.
    Furet P; Meyer T; Mittl P; Fretz H
    J Comput Aided Mol Des; 2001 May; 15(5):489-95. PubMed ID: 11394741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-based design of potent CDK1 inhibitors derived from olomoucine.
    Furet P; Zimmermann J; Capraro HG; Meyer T; Imbach P
    J Comput Aided Mol Des; 2000 Jul; 14(5):403-9. PubMed ID: 10896313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 2,6,9-trisubstituted purines: optimization towards highly potent and selective CDK1 inhibitors.
    Imbach P; Capraro HG; Furet P; Mett H; Meyer T; Zimmermann J
    Bioorg Med Chem Lett; 1999 Jan; 9(1):91-6. PubMed ID: 9990463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and biological activity of olomoucine II.
    Krystof V; Lenobel R; Havlícek L; Kuzma M; Strnad M
    Bioorg Med Chem Lett; 2002 Nov; 12(22):3283-6. PubMed ID: 12392733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of C2 alkynylated purines, a new family of potent inhibitors of cyclin-dependent kinases.
    Legraverend M; Ludwig O; Bisagni E; Leclerc S; Meijer L
    Bioorg Med Chem Lett; 1998 Apr; 8(7):793-8. PubMed ID: 9871543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2,6,8,9-tetrasubstituted purines as new CDK1 inhibitors.
    Moravec J; Krystof V; Hanus J; Havlícek L; Moravcová D; Fuksová K; Kuzma M; Lenobel R; Otyepka M; Strnad M
    Bioorg Med Chem Lett; 2003 Sep; 13(18):2993-6. PubMed ID: 12941319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical and biological profile of dual Cdk1 and Cdk2 inhibitors.
    Ruetz S; Fabbro D; Zimmermann J; Meyer T; Gray N
    Curr Med Chem Anticancer Agents; 2003 Jan; 3(1):1-14. PubMed ID: 12678910
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.