These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 9990733)
1. Xylitol production using recombinant Saccharomyces cerevisiae containing multiple xylose reductase genes at chromosomal delta-sequences. Kim YS; Kim SY; Kim JH; Kim SC J Biotechnol; 1999 Jan; 67(2-3):159-71. PubMed ID: 9990733 [TBL] [Abstract][Full Text] [Related]
2. Enhanced production of xylitol from xylose by expression of Bacillus subtilis arabinose:H Kim H; Lee HS; Park H; Lee DH; Boles E; Chung D; Park YC Enzyme Microb Technol; 2017 Dec; 107():7-14. PubMed ID: 28899489 [TBL] [Abstract][Full Text] [Related]
3. Xylitol production by recombinant Saccharomyces cerevisiae. Hallborn J; Walfridsson M; Airaksinen U; Ojamo H; Hahn-Hägerdal B; Penttilä M; Keräsnen S Biotechnology (N Y); 1991 Nov; 9(11):1090-5. PubMed ID: 1367625 [TBL] [Abstract][Full Text] [Related]
4. Xylitol production by recombinant Saccharomyces cerevisiae expressing the Pichia stipitis and Candida shehatae XYL1 genes. Govinden R; Pillay B; van Zyl WH; Pillay D Appl Microbiol Biotechnol; 2001 Jan; 55(1):76-80. PubMed ID: 11234962 [TBL] [Abstract][Full Text] [Related]
5. Optimization of CDT-1 and XYL1 expression for balanced co-production of ethanol and xylitol from cellobiose and xylose by engineered Saccharomyces cerevisiae. Zha J; Li BZ; Shen MH; Hu ML; Song H; Yuan YJ PLoS One; 2013; 8(7):e68317. PubMed ID: 23844185 [TBL] [Abstract][Full Text] [Related]
6. Expression of bifunctional enzymes with xylose reductase and xylitol dehydrogenase activity in Saccharomyces cerevisiae alters product formation during xylose fermentation. Anderlund M; Rådström P; Hahn-Hägerdal B Metab Eng; 2001 Jul; 3(3):226-35. PubMed ID: 11461145 [TBL] [Abstract][Full Text] [Related]
7. Physiological and enzymatic comparison between Pichia stipitis and recombinant Saccharomyces cerevisiae on xylose fermentation. Guo C; Jiang N World J Microbiol Biotechnol; 2013 Mar; 29(3):541-7. PubMed ID: 23180545 [TBL] [Abstract][Full Text] [Related]
8. The influence of cosubstrate and aeration on xylitol formation by recombinant Saccharomyces cerevisiae expressing the XYL1 gene. Hallborn J; Gorwa MF; Meinander N; Penttilä M; Keränen S; Hahn-Hägerdal B Appl Microbiol Biotechnol; 1994 Nov; 42(2-3):326-33. PubMed ID: 7765774 [TBL] [Abstract][Full Text] [Related]
9. Effect on product formation in recombinant Saccharomyces cerevisiae strains expressing different levels of xylose metabolic genes. Bao X; Gao D; Qu Y; Wang Z; Walfridssion M; Hahn-Hagerbal B Chin J Biotechnol; 1997; 13(4):225-31. PubMed ID: 9631257 [TBL] [Abstract][Full Text] [Related]
10. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. Lee SH; Kodaki T; Park YC; Seo JH J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927 [TBL] [Abstract][Full Text] [Related]
11. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase. Matsushika A; Sawayama S Enzyme Microb Technol; 2011 May; 48(6-7):466-71. PubMed ID: 22113018 [TBL] [Abstract][Full Text] [Related]
12. Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Kötter P; Amore R; Hollenberg CP; Ciriacy M Curr Genet; 1990 Dec; 18(6):493-500. PubMed ID: 2127555 [TBL] [Abstract][Full Text] [Related]
13. Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation. Walfridsson M; Anderlund M; Bao X; Hahn-Hägerdal B Appl Microbiol Biotechnol; 1997 Aug; 48(2):218-24. PubMed ID: 9299780 [TBL] [Abstract][Full Text] [Related]
14. A glycerol-3-phosphate dehydrogenase-deficient mutant of Saccharomyces cerevisiae expressing the heterologous XYL1 gene. Lidén G; Walfridsson M; Ansell R; Anderlund M; Adler L; Hahn-Hägerdal B Appl Environ Microbiol; 1996 Oct; 62(10):3894-6. PubMed ID: 8837449 [TBL] [Abstract][Full Text] [Related]
15. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction. Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862 [TBL] [Abstract][Full Text] [Related]
16. Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Jin YS; Jeffries TW Appl Biochem Biotechnol; 2003; 105 -108():277-86. PubMed ID: 12721451 [TBL] [Abstract][Full Text] [Related]
17. Xylitol formation and reduction equivalent generation during anaerobic xylose conversion with glucose as cosubstrate in recombinant Saccharomyces cerevisiae expressing the xyl1 gene. Thestrup HN; Hahn-Hägerdal B Appl Environ Microbiol; 1995 May; 61(5):2043-5. PubMed ID: 7646047 [TBL] [Abstract][Full Text] [Related]
18. Cloning and expression in Saccharomyces cerevisiae of the NAD(P)H-dependent xylose reductase-encoding gene (XYL1) from the xylose-assimilating yeast Pichia stipitis. Amore R; Kötter P; Küster C; Ciriacy M; Hollenberg CP Gene; 1991 Dec; 109(1):89-97. PubMed ID: 1756986 [TBL] [Abstract][Full Text] [Related]
19. The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Jeppsson M; Bengtsson O; Franke K; Lee H; Hahn-Hägerdal B; Gorwa-Grauslund MF Biotechnol Bioeng; 2006 Mar; 93(4):665-73. PubMed ID: 16372361 [TBL] [Abstract][Full Text] [Related]